Two dedicated receptors for bile acids (BAs) have been identified, the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, which represent attractive targets for the treatment of metabolic and chronic liver diseases. Previous work characterized 6␣-ethyl-3␣,7␣-dihydroxy-5-cholan-24-oic acid (INT-747), a potent and selective FXR agonist, as well as 6␣-ethyl-23(S)-methyl-3␣,7␣,12␣-trihydroxy-5-cholan-24-oic acid (INT-777), a potent and selective TGR5 agonist. Here we characterize 6␣-ethyl-3␣,7␣,23-trihydroxy-24-nor-5-cholan-23-sulfate sodium salt (INT-767), a novel semisynthetic 23-sulfate derivative of INT-747. INT-767 is a potent agonist for both FXR (mean EC 50 , 30 nM by PerkinElmer AlphaScreen assay) and TGR5 (mean EC 50 , 630 nM by time resolved-fluorescence resonance energy transfer), the first compound described so far to potently and selectively activate both BA receptors.INT-767 does not show cytotoxic effects in HepG2 cells, does not inhibit cytochrome P450 enzymes, is highly stable to phase I and II enzymatic modifications, and does not inhibit the human ether-a-go-go-related gene potassium channel. In line with its dual activity, INT-767 induces FXRdependent lipid uptake by adipocytes, with the beneficial effect of shuttling lipids from central hepatic to peripheral fat storage, and promotes TGR5-dependent glucagon-like peptide-1 secretion by enteroendocrine cells, a validated target in the treatment of type 2 diabetes. Moreover, INT-767 treatment markedly decreases cholesterol and triglyceride levels in diabetic db/db mice and in mice rendered diabetic by streptozotocin administration. Collectively, these preclinical results indicate that INT-767 is a safe and effective modulator of FXR and TGR5-dependent pathways, suggesting potential clinical applications in the treatment of liver and metabolic diseases.
Several studies revealed consistent overlap between synucleinopathies and tauopathies, demonstrating that α-synuclein (ASYN) and tau co-localize in neurofibrillary tangles and in Lewy bodies from Alzheimer’s and Parkinson’s disease patients and corresponding animal models. Additionally, it has been shown that ASYN can act as an initiator of tau aggregation and phosphorylation and that these two proteins directly interact. Despite these evidences, the cellular pathway implicated in this synergistic interaction remains to be clarified. The aim of this study was to create a yeast model where the concomitant expression of ASYN and tau can be used to perform genome wide screenings for the identification of genes that modulate this interaction, in order to shed light into the pathological mechanism of cell dysfunction and to provide new targets for future therapeutic intervention. We started by validating the synergistic toxicity of tau and ASYN co-expression in yeast, by developing episomal and integrative strains expressing WT and mutant forms of both proteins, alone or in combination. The episomal strains showed no differences in growth delay upon expression of ASYN isoforms (WT or A53T) alone or in combination with tau 2N/4R isoforms (WT or P301L). However, in these strains, the presence of ASYN led to increased tau insolubility and correlated with increased tau phosphorylation in S396/404, which is mainly mediated by RIM11, the human homolog of GSK3β in yeast. On the other hand, the integrative strains showed a strong synergistic toxic effect upon co-expression of ASYN WT and tau WT, which was related to high levels of intracellular ASYN inclusions and increased tau phosphorylation and aggregation. Taken together, the strains described in the present study are able to mimic relevant pathogenic features involved in neurodegeneration and are powerful tools to identify potential target genes able to modulate the synergistic pathway driven by ASYN and tau interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.