The ability of Time-Dependent Density Functional Theory (TD-DFT) to provide excited state geometries and reproduce emission energies of organic D-π-A dyes designed for DSSC applications is evaluated. The performance of six functionals (CAM-B3LYP, MPW1K, ωB97X-D, LC-BLYP, LC-ωPBE, and M06-HF) in combination with three basis sets (cc-pVDZ, 6-31+G(d,p), and 6-311+G(2d,p)) has been analyzed. Solvent effects have been taken into account by means of a Polarizable Continuum Model in both LR and SS formalisms. Our LR-PCM/TD-DFT results show that accurate emission energies are obtained only when solvent effects are included in the computation of excited state geometries and when a range separated hybrid functional is used. Vertical emission energies are reproduced with a mean absolute error of at most 0.2 eV. The accuracy is further improved using the SS-PCM formalism.
One of the unresolved problems of solid-phase organic synthesis (SPOS) is the availability of general and rapid methods to monitor the transformation of functional groups present in molecules supported on insoluble supports. Color tests, far from providing the ultimate solution, may help in detection (and sometimes in quantification) of different functional groups. In this short review, we have collected most of the methods available and applied in SPOS with an Experimental Section that describes the procedure we have successfully applied to bead analyses in our laboratories.
Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 μm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.