We introduce a novel method to improve the performance of passive teleoperation systems with force reflection. It consists of integrating kinesthetic haptic feedback provided by common grounded haptic interfaces with cutaneous haptic feedback. The proposed approach can be used on top of any time-domain control technique that ensures a stable interaction by scaling down kinesthetic feedback when this is required to satisfy stability conditions (e.g., passivity) at the expense of transparency. Performance is recovered by providing a suitable amount of cutaneous force through custom wearable cutaneous devices. The viability of the proposed approach is demonstrated through an experiment of perceived stiffness and an experiment of teleoperated needle insertion in soft tissue.
This paper deals with the problem of cost-optimal operation of smart buildings that integrate a centralized HVAC system, photovoltaic generation and both thermal and electrical storage devices.Building participation in a Demand-Response program is also considered. The proposed solution is based on a specialized Model Predictive Control strategy to optimally manage the HVAC system and the storage devices under thermal comfort and technological constraints. The related optimization problems turn out to be computationally appealing, even for large-scale problem instances. Performance evaluation, also in the presence of uncertainties and disturbances, is carried out using a realistic simulation framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.