Attention is an important mechanism that can be employed for a variety of deep learning models across many different domains and tasks. This survey provides an overview of the most important attention mechanisms proposed in the literature. The various attention mechanisms are explained by means of a framework consisting of a general attention model, uniform notation, and a comprehensive taxonomy of attention mechanisms. Furthermore, the various measures for evaluating attention models are reviewed, and methods to characterize the structure of attention models based on the proposed framework are discussed. Last, future work in the field of attention models is considered.
With the constantly growing number of reviews and other sentiment-bearing texts on the Web, the demand for automatic sentiment analysis algorithms continues to expand. Aspect-based sentiment classification (ABSC) allows for the automatic extraction of highly fine-grained sentiment information from text documents or sentences. In this survey, the rapidly evolving state of the research on ABSC is reviewed. A novel taxonomy is proposed that categorizes the ABSC models into three major categories: knowledge-based, machine learning, and hybrid models. This taxonomy is accompanied with summarizing overviews of the reported model performances, and both technical and intuitive explanations of the various ABSC models. State-of-the-art ABSC models are discussed, such as models based on the transformer model, and hybrid deep learning models that incorporate knowledge bases. Additionally, various techniques for representing the model inputs and evaluating the model outputs are reviewed. Furthermore, trends in the research on ABSC are identified and a discussion is provided on the ways in which the field of ABSC can be advanced in the future.
Sentiment analysis techniques are becoming more and more important as the number of reviews on the World Wide Web keeps increasing. Aspect-based sentiment analysis (ABSA) entails the automatic analysis of sentiments at the highly fine-grained aspect level. One of the challenges of ABSA is to identify the correct sentiment expressed towards every aspect in a sentence. In this paper, a neural attention model is discussed and three extensions are proposed to this model. First, the strengths and weaknesses of the highly successful CABASC model are discussed, and three shortcomings are identified: the aspect-representation is poor, the current attention mechanism can be extended for dealing with polysemy in natural language, and the design of the aspect-specific sentence representation is upheld by a weak construction. We propose the Extended CABASC (E-CABASC) model, which aims to solve all three of these problems. The model incorporates a context-aware aspect representation, a multi-dimensional attention mechanism, and an aspect-specific sentence representation. The main contribution of this work is that it is shown that attention models can be improved upon using some relatively simple extensions, such as fusion gates and multi-dimensional attention, which can be implemented in many state-of-the-art models. Additionally, an analysis of the parameters and attention weights is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.