Background: Lipid transfer proteins (LTPs) are small molecules of approximately 10 kD that demonstrate high stability. They have recently been identified as allergens in the Rosaceae subfamilies of the Prunoideae (peach, apricot, plum) and of the Pomoideae (apple). They belong to a family of structurally highly conserved proteins that are also present in non-Rosaceae vegetable foods. Objective: The aim of this study was to investigate the cross-reactivity to non-Rosaceae LTPs, and to study the role of protein stability in allergenicity. Methods: Thirty-eight patients with a positive SPT to Rosaceae fruit extracts enriched for LTP were characterized by interview and SPT. To investigate IgE cross-reactivity between Rosaceae and non-Rosaceae LTPs, RAST and RAST inhibition as well as ELISA and ELISA inhibition were performed, using whole food extracts and purified LTPs. Both purified natural LTPs (peach, carrot and broccoli) and Pichia pastoris recombinant LTPs (carrot and wheat) were included. Pepsin digestion was used to address the role of stability in the allergenicity of LTPs. Results: IgE antibodies to Rosaceae LTPs reacted to a broad range of vegetable foods, including Gramineae (cereals), Leguminosae (peanut), Juglandaceae (walnut), Anacardiaceae (pistachio), Brassicaceae (broccoli), Umbelliferae (carrot, celery), Solanaceae (tomato), Cucurbitaceae (melon), and Actinidiaceae (kiwi). Binding and inhibition studies with purified natural and recombinant LTPs confirmed their role in this cross-reactivity. Many of these cross-reactivities were accompanied by clinical food allergy, frequently including systemic reactions. Antibody binding to LTP was shown to be resistant to pepsin treatment of whole extract or purified LTP. Conclusion: LTP is a pan-allergen with a degree of cross-reactivity comparable to profilin. Due to its extreme resistance to pepsin digestion, LTP is a potentially severe food allergen.
LTP is a clinically relevant pan-allergen. Most Rosaceae-allergic, LTP-hypersensitive patients experience adverse reactions after ingestion of botanically unrelated plant-derived foods as well. In view of the high prevalence and severity of the allergic reactions induced, hazelnut, walnut, and peanut should be regarded as potentially hazardous for these patients.
Background: Lipid transfer proteins (LTPs) are stable and highly conserved proteins of around 10 kD. They have recently been identified as allergens in fruits of the Rosaceae family. Objective: The aim of this study was to investigate whether the highly conserved structure of LTPs justifies a designation as a true pan-allergen, and to study the role of protein stability in allergenicity. Methods: Thirty-eight patients with a positive skin prick test to Rosaceae fruit extracts were characterized by interviews and skin prick tests. To investigate IgE cross-reactivity between Rosaceae and non-Rosaceae LTPs, RAST and RAST inhibition as well as ELISA and ELISA inhibition were performed, using whole food extracts and purified natural and recombinant LTPs. To address the role of protein stability in the allergenicity of LTP, fruit extracts and LTPs were digested with pepsin. Results: IgE antibodies to Rosaceae LTPs cross-reacted with a broad range of non-Rosaceae vegetable foods. Inhibition studies with purified natural and recombinant LTPs confirmed the role of LTP in this cross-reactivity. Many of the patients with this type of cross-reactive IgE antibodies had a clinical food allergy. In contrast to the typical birch Rosaceae cross-reactive patients, the oral allergy syndrome was frequently accompanied by more severe and systemic reactions. IgE reactivity to LTP was shown to be resistant to pepsin treatment of the allergen. Conclusion: LTP is a true pan-allergen with a degree of cross-reactivity comparable to profilin. Due to its extreme resistance to pepsin digestion, LTP is a potentially severe food allergen.
Only severe heat treatment caused a significant decrease in the allergenicity of Mal d 3 but glycation had a protective effect. The presence of sugars in fruits may contribute to the thermostability of the allergenic activity of LTP in heat-processed foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.