Abstract-Image priors based on products have been recognized to offer many advantages because they allow simultaneous enforcement of multiple constraints. However, they are inconvenient for Bayesian inference because it is hard to find their normalization constant in closed form. In this paper, a new Bayesian algorithm is proposed for the image restoration problem that bypasses this difficulty. An image prior is defined by imposing Student-t densities on the outputs of local convolutional filters. A variational methodology, with a constrained expectation step, is used to infer the restored image. Numerical experiments are shown that compare this methodology to previous ones and demonstrate its advantages.
Abstract-In this paper a new image prior is introduced and used in image restoration. This prior is based on products of spatially weighted Total Variations (TV). These spatial weights provide this prior with the flexibility to better capture local image features than previous TV based priors. Bayesian inference is used for image restoration with this prior via the variational approximation. The proposed restoration algorithm is fully automatic in the sense that all necessary parameters are estimated from the data and is faster than previous similar algorithms. Numerical experiments are shown which demonstrate that image restoration based on this prior compares favorably with previous state-of-the-art restoration algorithms.
In this paper, we propose a maximum a posteriori ramework for the super-resolution problem, i.e., reconstructing high-resolution images from shifted, rotated, low-resolution degraded observations. The main contributions of this work are two; first, the use of a new locally adaptive edge preserving prior for the super-resolution problem. Second an efficient two-step reconstruction methodology that includes first an initial registration using only the low-resolution degraded observations. This is followed by a fast iterative algorithm implemented in the discrete Fourier transform domain in which the restoration, interpolation and the registration subtasks of this problem are preformed simultaneously. We present examples with both synthetic and real data that demonstrate the advantages of the proposed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.