Dynamic network slicing has emerged as a promising and fundamental framework for meeting 5G's diverse use cases. As machine learning (ML) is expected to play a pivotal role in the efficient control and management of these networks, in this work we examine the ML-based Quality-of-Transmission (QoT) estimation problem under the dynamic network slicing context, where each slice has to meet a different QoT requirement. We examine ML-based QoT frameworks with the aim of finding QoT model/s that are fine-tuned according to the diverse QoT requirements. Centralized and distributed frameworks are examined and compared according to their accuracy and training time. We show that the distributed QoT models outperform the centralized QoT model, especially as the number of diverse QoT requirements increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.