Previous studies of the analysis of molecular matched pairs (MMPs) have often assumed that the effect of a substructural transformation on a molecular property is independent of the context (i.e., the local structural environment in which that transformation occurs). Experiments with large sets of hERG, solubility, and lipophilicity data demonstrate that the inclusion of contextual information can enhance the predictive power of MMP analyses, with significant trends (both positive and negative) being identified that are not apparent when using conventional, context-independent approaches.
SummaryThree commercially available pharmacophore generation programs, Catalyst/HipHop, DISCO and GASP, were compared on their ability to generate known pharmacophores deduced from protein-ligand complexes extracted from the Protein Data Bank. Five different protein families were included Thrombin, Cyclin Dependent Kinase 2, Dihydrofolate Reductase, HIV Reverse Transcriptase and Thermolysin. Target pharmacophores were defined through visual analysis of the data sets. The pharmacophore models produced were evaluated qualitatively through visual inspection and according to their ability to generate the target pharmacophores. Our results show that GASP and Catalyst outperformed DISCO at reproducing the five target pharmacophores.
Virtual screening and high-throughput screening are two major components of lead discovery within the pharmaceutical industry. In this paper we describe improvements to previously published methods for similarity searching with reduced graphs, with a particular focus on ligand-based virtual screening, and describe a novel use of reduced graphs in the clustering of high-throughput screening data. Literature methods for reduced graph similarity searching encode the reduced graphs as binary fingerprints, which has a number of issues. In this paper we extend the definition of the reduced graph to include positively and negatively ionizable groups and introduce a new method for measuring the similarity of reduced graphs based on a weighted edit distance. Moving beyond simple similarity searching, we show how more flexible queries can be built using reduced graphs and describe a database system that allows iterative querying with multiple representations. Reduced graphs capture many important features of ligand-receptor interactions and, in conjunction with other whole molecule descriptors, provide an informative way to review HTS data. We describe a novel use of reduced graphs in this context, introducing a method we have termed data-driven clustering, that identifies clusters of molecules represented by a particular whole molecule descriptor and enriched in active compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.