Study Objectives: Sodium oxybate (SO) is a GABA B agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. Design: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABA B receptor agonist, to assess the role of GABA B receptors in the SO response. Measurements and Results: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods.
Conclusions:The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABA B receptors in REMS generation.
Dysphagia is a frequent complication in neurologically impaired patients, which can lead to aspiration pneumonia and thus prolonged hospitalization or even death. It is essential therefore, to detect and assess dysphagia early for best patient care. Fiberoptic endoscopic and Videofluoroscopy evaluation of swallowing are the gold standard exams in swallowing studies but neither are perfectly suitable for patients with disorders of consciousness (DOC). In this study, we aimed to find the sensitivity and specificity of the Nox-T3 sleep monitor for detection of swallowing. A combination of submental and peri-laryngeal surface electromyography, nasal cannulas and respiratory inductance plethysmography belts connected to Nox-T 3 allows recording swallowing events and their coordination with breathing, providing time-coordinated patterns of muscular and respiratory activity. We compared Nox-T3 swallowing capture to manual swallowing detection on fourteen DOC patients. The Nox-T3 method identified swallow events with a sensitivity of 95% and a specificity of 99%. In addition, Nox-T3 has qualitative contributions, such as visualization of the swallowing apnea in the respiratory cycle which provide additional information on the swallowing act that is useful to clinicians in the management and rehabilitation of the patient. These results suggest that Nox-T3 could be used for swallowing detection in DOC patients and support its continued clinical use for swallowing disorder investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.