We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets.
Eye tracking provides a quantitative measure of eye movements during different activities. We report the results from a bibliometric analysis to investigate trends in eye tracking research applied to the study of different medical conditions. We conducted a search on the Web of Science Core Collection (WoS) database and analyzed the dataset of 2456 retrieved articles using VOSviewer and the Bibliometrix R package. The most represented area was psychiatry (503, 20.5%) followed by neuroscience (465, 18.9%) and psychology developmental (337, 13.7%). The annual scientific production growth was 11.14% and showed exponential growth with three main peaks in 2011, 2015 and 2017. Extensive collaboration networks were identified between the three countries with the highest scientific production, the USA (35.3%), the UK (9.5%) and Germany (7.3%). Based on term co-occurrence maps and analyses of sources of articles, we identified autism spectrum disorders as the most investigated condition and conducted specific analyses on 638 articles related to this topic which showed an annual scientific production growth of 16.52%. The majority of studies focused on autism used eye tracking to investigate gaze patterns with regards to stimuli related to social interaction. Our analysis highlights the widespread and increasing use of eye tracking in the study of different neurological and psychiatric conditions.
Web usability is a crucial feature of a website, allowing users to easily find information in a short time. Eye tracking data registered during the execution of tasks allow to measure web usability in a more objective way compared to questionnaires. In this work, we evaluated the web usability of the website of the University of Cagliari through the analysis of eye tracking data with qualitative and quantitative methods. Performances of two groups of students (i.e., high school and university students) across 10 different tasks were compared in terms of time to completion, number of fixations and difficulty ratio. Transitions between different areas of interest (AOI) were analyzed in the two groups using Markov chain. For the majority of tasks, we did not observe significant differences in the performances of the two groups, suggesting that the information needed to complete the tasks could easily be retrieved by students with little previous experience in using the website. For a specific task, high school students showed a worse performance based on the number of fixations and a different Markov chain stationary distribution compared to university students. These results allowed to highlight elements of the pages that can be modified to improve web usability.
Psychiatric disorders are among the top leading causes of the global health-related burden. Comorbidity with cardiometabolic and sleep disorders contribute substantially to this burden. While both genetic and environmental factors have been suggested to underlie these comorbidities, the specific molecular underpinnings are not well understood. In this study, we leveraged large datasets from genome-wide association studies (GWAS) on psychiatric disorders, cardiometabolic and sleep-related traits. We computed genetic correlations between pairs of traits using cross-trait linkage disequilibrium (LD) score regression and identified clusters of genetically correlated traits using k-means clustering. We further investigated the identified associations using two-sample mendelian randomization (MR) and tested the local genetic correlation at the identified loci. In the 7-cluster optimal solution, we identified a cluster including insomnia and the psychiatric disorders major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and attention-deficit/hyperactivity disorder (ADHD). MR analysis supported the existence of a bidirectional association between MDD and insomnia and the genetic variants driving this association were found to affect gene expression in different brain regions. Some of the identified loci were further supported by results of local genetic correlation analysis, with body mass index (BMI) and C-reactive protein (CRP) levels suggested to explain part of the observed effects. We discuss how the investigation of the genetic relationships between psychiatric disorders and comorbid conditions might help us to improve our understanding of their pathogenesis and develop improved treatment strategies.
During the recent Coronavirus disease 2019 (COVID-19) outbreak, the microblogging service Twitter has been widely used to share opinions and reactions to events. Italy was one of the first European countries to be severely affected by the outbreak and to establish lockdown and stay-at-home orders, potentially leading to country reputation damage. We resort to sentiment analysis to investigate changes in opinions about Italy reported on Twitter before and after the COVID-19 outbreak. Using different lexicons-based methods, we find a breakpoint corresponding to the date of the first established case of COVID-19 in Italy that causes a relevant change in sentiment scores used as a proxy of the country’s reputation. Next, we demonstrate that sentiment scores about Italy are associated with the values of the FTSE-MIB index, the Italian Stock Exchange main index, as they serve as early detection signals of changes in the values of FTSE-MIB. Lastly, we evaluate whether different machine learning classifiers were able to determine the polarity of tweets posted before and after the outbreak with a different level of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.