Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (−7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant −10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
Identifying climate refugia is key to effective biodiversity conservation under a changing climate, especially for mountain-specialist species adapted to cold conditions and highly threatened by climate warming. We combined species distribution models (SDMs) with climate forecasts to identify climate refugia for high-elevation bird species (Lagopus muta, Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the ecological effects of climate changes are particularly evident and predicted to intensify.We considered future (2041-2070) conditions (SSP585 scenario, four climate models) and identified three types of refugia: (1) in-situ refugia potentially suitable under both current and future climate conditions, ex-situ refugia suitable (2) only in the future according to all future conditions, or (3) under at least three out of four future conditions. SDMs were based on a very large, high-resolution occurrence dataset (2901-12,601 independent records for each species) collected by citizen scientists. SDMs were fitted using different algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation ability. We selected the most reliable ones based on consistency between training and testing data and extrapolation over distant areas. Future predictions revealed that all species (with the partial exception of A. spinoletta) will undergo a range contraction towards higher elevations, losing 17%-59% of their current range (larger losses in L. muta). We identified ~15,000 km 2 of the Alpine region as in-situ refugia for at least three species, of which 44% are currently designated as protected areas (PAs; 18%-66% among countries). Our findings highlight the usefulness of spatially accurate data collected by citizen scientists, and the importance of model testing by extrapolating over independent areas. Climate refugia, which are only partly included within the current PAs system, should be priority sites for the conservation of Alpine high-elevation species and habitats, where habitat degradation/alteration by human activities should be prevented to ensure future suitability for alpine species.
ContextTiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) represent a typical multi-predator system of species of conservation concern. Several studies have addressed this system, with heterogeneous results, and there’s a lack of information on population dynamics of multi-species assemblages. We studied a time series (1998–2009) of abundance indices for three predators and five prey species in Bor Wildlife Sanctuary (BWS), Maharashtra, India, before it was declared as Bor Tiger Reserve (BTR) in 2009. AimsTo analyse the complex relationships within a predator–prey system in a dynamic fashion, to analyse data collected in a stable and undisturbed area and to form a comparison basis for future studies within the sanctuary after its declaration as a Tiger Reserve. MethodsA 24-h effort was made annually to census the BWS. Predators were counted at waterholes from arboreal hideouts. The prey populations were censused along 353-km line-transects. For each species, we analysed the yearly growth rate, testing the effect of inter-species abundance. Key resultsTiger growth rate did not depend on any particular prey, whereas mesopredators seemed to depend on medium-sized prey. A die-out of dholes in 2001 was followed by an increase in tiger populations (from 4 to 11), which, in turn, negatively affected leopard numbers (from 6 to 2).We found no direct evidence of top-down effect, but the density dependence for three of five prey species could be linked to predation pressure. We found some evidence of interspecific competition among prey species, especially among ungulates, potentially being mediated by predation pressure. ConclusionsThe relationships among species in a predator–prey system are very complex and often could be explained only by more-than-two-species interactions. The disappearance of one predator, not necessarily the top predator, could bring multiple effects, for which it could be difficult to detect causal relationships. ImplicationsAll subsequent changes in human activities in the sanctuary, as a consequence of its designation as the BTR in 2009, should be evaluated with respect to the results of the present study. The conservation of large predators should rely on the maintenance of a rich and abundant prey base, in which different-sized prey could lessen interactive-competition among the predators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.