Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Biocorrosion in marine environment is often associated with biofilms of sulfate reducing bacteria (SRB). However, not much information is available on the mechanism underlying exacerbated rates of SRB-mediated biocorrosion under saline conditions. Using Desulfovibrio (D.) vulgaris and Desulfobacterium (Db.) corrodens as model SRBs, the enhancement effects of salinity on sulfate reduction, N-acyl homoserine lactone (AHL) production and biofilm formation by SRBs were demonstrated. Under saline conditions, D. vulgaris and Db. corrodens exhibited significantly higher specific sulfate reduction and specific AHL production rates as well as elevated rates of biofilm formation compared to freshwater medium. Salinity-induced enhancement traits were also confirmed at transcript level through reverse transcription quantitative polymerase chain reaction (RT-qPCR) approach, which showed salinity-influenced increase in the expression of genes associated with carbon metabolism, sulfate reduction, biofilm formation and histidine kinase signal transduction. In addition, by deploying quorum sensing (QS) inhibitors, a potential connection between sulfate reduction and AHL production under saline conditions was demonstrated, which is most significant during early stages of sulfate metabolism. The findings collectively revealed the interconnection between QS, sulfate reduction and biofilm formation among SRBs, and implied the potential of deploying quorum quenching approaches to control SRB-based biocorrosion in saline conditions.
Bacteriophages active against a New Delhi metallo beta lactamase (NDM)-positive E. coli PI-7 were isolated from municipal wastewater and tested for their lytic effect against the bacterial host. Bacteriophages were highly specific to E. coli PI-7 when tested for host-range. After determining host-specificity, bacteriophages were tested for their ability to sensitize E. coli PI-7 to solar irradiation. Solar irradiation coupled with bacteriophages successfully reduced the length of the lag-phase for E. coli PI-7 from 4 h to 2 h in buffer solution. The reduction of lag-phase length was also observed in filtered wastewater effluent and chlorinated effluent. Previously, we found through gene expression analysis that cell wall, oxidative stress, and DNA repair functions played a large role in protecting E. coli PI-7 against solar damage. Here, gene expression analysis of bacteriophage-supplemented solar-irradiated E. coli PI-7 revealed downregulation of cell wall functions. Downregulation of functions implicated in scavenging and detoxifying reactive oxygen species, as well as DNA repair genes, was also observed in bacteriophage-supplemented solar-irradiated E. coli PI-7. Moreover, solar irradiation activates recA, which can induce lytic activity of bacteriophages. Overall, the combined treatment led to gene responses that appeared to make E. coli PI-7 more susceptible to solar disinfection and bacteriophage infection. Our findings suggest that bacteriophages show good potential to be used as a biocontrol tool to complement solar irradiation in mitigating the persistence of antibiotic-resistant bacteria in reuse waters.
Sulfate-reducing bacteria (SRB) are key contributors to microbe-induced corrosion (MIC), which can lead to serious economic and environmental impact. The presence of a biofilm significantly increases the MIC rate. Inhibition of the quorum-sensing (QS) system is a promising alternative approach to prevent biofilm formation in various industrial settings, especially considering the significant ecological impact of conventional chemical-based mitigation strategies. In this study, the effect of the QS stimulation and inhibition on Desulfovibrio vulgaris is described in terms of anaerobic respiration, cell activity, biofilm formation, and biocorrosion of carbon steel. All these traits were repressed when bacteria were in contact with QS inhibitors but enhanced upon exposure to QS signal molecules compared to the control. The difference in the treatments was confirmed by transcriptomic analysis performed at different time points after treatment application. Genes related to lactate and pyruvate metabolism, sulfate reduction, electron transfer, and biofilm formation were downregulated upon QS inhibition. In contrast, QS stimulation led to an upregulation of the above-mentioned genes compared to the control. In summary, these results reveal the impact of QS on the activity of D. vulgaris, paving the way toward the prevention of corrosive SRB biofilm formation via QS inhibition. IMPORTANCE Sulfate-reducing bacteria (SRB) are considered key contributors to biocorrosion, particularly in saline environments. Biocorrosion imposes tremendous economic costs, and common approaches to mitigate this problem involve the use of toxic and hazardous chemicals (e.g., chlorine), which raise health and environmental safety concerns. Quorum-sensing inhibitors (QSIs) can be used as an alternative approach to inhibit biofilm formation and biocorrosion. However, this approach would only be effective if SRB rely on QS for the pathways associated with biocorrosion. These pathways would include biofilm formation, electron transfer, and metabolism. This study demonstrates the role of QS in Desulfovibrio vulgaris on the above-mentioned pathways through both phenotypic measurements and transcriptomic approach. The results of this study suggest that QSIs can be used to mitigate SRB-induced corrosion problems in ecologically sensitive areas.
Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.