SUMMARY Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. To identify such mechanisms, we studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell–predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.
Summary In Parkinson disease (PD), dopamine depletion alters neuronal activity in the direct and indirect pathways and leads to increased synchrony in the basal ganglia network. However, the origins of these changes remain elusive. Because GABAergic interneurons regulate activity of projection neurons and promote neuronal synchrony, we recorded from pairs of striatal fast-spiking (FS) interneurons and direct- or indirect-pathway MSNs after dopamine depletion with 6-OHDA. Synaptic properties of FS-MSN connections remained similar, yet within 3 days of dopamine depletion, individual FS cells doubled their connectivity to indirect-pathway MSNs, whereas connections to direct-pathway MSNs remained unchanged. A model of the striatal microcircuit revealed that such increases in FS innervation were effective at enhancing synchrony within targeted cell populations. These data suggest that after dopamine depletion, rapid target-specific microcircuit organization in the striatum may lead to increased synchrony of indirect-pathway MSNs that contributes to pathological network oscillations and motor symptoms of PD.
While it has been appreciated for decades that synapse location in the dendritic tree has a powerful influence on signal processing in neurons, the role of dendritic synapse location on the induction of long-term synaptic plasticity has only recently been explored. Here, we review recent work revealing how learning rules for spike-timing-dependent plasticity (STDP) in cortical neurons vary with the spatial location of synaptic input. A common principle appears to be that proximal synapses show conventional STDP, whereas distal inputs undergo plasticity according to novel learning rules. One crucial factor determining location-dependent STDP is the backpropagating action potential, which tends to decrease in amplitude and increase in width as it propagates into the dendritic tree of cortical neurons. We discuss additional location-dependent mechanisms as well as the functional implications of heterogeneous learning rules at different dendritic locations for the organization of synaptic inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.