Forecasting driving behavior or other sensor measurements is an essential component of autonomous driving systems. Often real-world multivariate time series data is hard to model because the underlying dynamics are nonlinear and the observations are noisy. In addition, driving data can often be multimodal in distribution, meaning that there are distinct predictions that are likely, but averaging can hurt model performance. To address this, we propose the Switching Recurrent Kalman Network (SRKN) for efficient inference and prediction on nonlinear and multimodal time-series data. The model switches among several Kalman filters that model different aspects of the dynamics in a factorized latent state. We empirically test the resulting scalable and interpretable deep state-space model on toy data sets and real driving data from taxis in Porto. In all cases, the model can capture the multimodal nature of the dynamics in the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.