In this work, an experimental setup to study the dependence of a visible-light transmission through a magnetic granular film on the magnetic field direction was presented. The results measured the transmission (T) of the visible light, with the wavelengths λ were in the range from 560 to 695 nm, by the magnetic nanogranular films Cox-(Al2O3)100-x system, with Co compositions are x = 10 ÷ 45 at.%, as a function of the magnetic field direction were reported. These investigations were carried out under an external magnetic field of H = 400 Oe, which directs to the normal of the sample surface by an angle varied in the range of φ = 0° ÷ 45°, to magnetize the magnetization direction of all the Co particles following this direction. Consequently, the angle φ between the magnetization direction with the incident-light direction, which sets as the optical axis of the system and always keeps fixedly to the normal of the sample surface, is established. The experimental results showed the different dependencies of T on the angle φ, the magnetic field H, the Co composition x, and the wavelength λ. These dependencies attributed to a behavior that relates to so-called photon-magnon interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.