The laser-induced breakdown spectroscopy (LIBS) technique was applied to quantify nutrients (Mg, Ca, Na, and K) in spinach and rice and to discriminate pesticide-contaminated products in a rapid manner. Standard reference materials (spinach leaves and unpolished rice flour) were used to establish a relationship between LIBS intensity and the concentration of each element (Mg, Ca, Na, and K) (i.e., calibration line). The limits of detection (LODs) for Mg, Ca, Na, and K were found to be 29.63, 102.65, 36.36, and 44.46 mg/kg in spinach and 7.54, 1.76, 4.19, and 6.70 mg/kg in unpolished rice, respectively. Concentrations of those nutrient elements present in spinach and unpolished rice from a local market were determined by using the calibration lines and compared with those measured with ICP-OES, showing good agreement. The data also suggested that the LIBS technique with the chemometric method (PLS-DA) could be a great tool to distinguish pesticide-contaminated samples from pesticide-free samples in a rapid manner even though they have similar elemental compositions. Misclassification rates were found to be 0 and 2% for clean spinach and pesticide-contaminated spinach, respectively, by applying the PLS-DA model established from the training set of data to predict the classes of test samples.
A laser-induced breakdown spectrometer (LIBS) was developed for determining the elemental composition of individual airborne particles. The system employs two lasers focused on a narrow beam of particles. A continuous wave laser placed upstream scatters light from particles, while a pulse laser downstream ablates the particles. The scattered light from the upstream laser is used to trigger the downstream pulse laser, resulting in more accurate hitting of the particles than a free-firing laser system without the triggering signal (i.e., constant pulse laser firing). Various laboratory-generated aerosols (NaCl, MgCl 2 , KCl, and CaCl 2) were used to evaluate the newly developed LIBS system. Particles were tightly focused into a center line with a sheath air focusing system using an optimum aerosol-to-sheath air velocity ratio. The locations of both the scattering laser and pulse laser beams were precisely controlled by a motorized X-Y stage controller. Data showed that for the LIBS with the triggering system, the hitting efficiency (%) of particles (200-600 nm) significantly increased (e.g., 350 nm particles had more than 26 times higher hitting efficiency at 1,000 particles/cm 3), and much lower limits of particle size (»200 nm) and number concentration (<100 particles/cm 3) were achieved compared to the free-firing laser condition. Additionally, the hitting rate (hits/min) significantly increased with the triggering system. Our results suggest that the LIBS with the triggering system can be useful for real-time detection of elements of particles existing at low number concentrations (e.g., atmospheric particles) and for the determination of the variation of elemental composition among particles.
Aerosols have been associated with large uncertainties in estimates of the radiation budget and cloud formation processes in the Arctic. This paper reports the results of a study of in situ measurements of hygroscopicity, fraction of volatile species, mixing state, and off-line morphological and elemental analysis of Aitken and accumulation mode particles in the Arctic (Ny-Ålesund, Svalbard) in May and September 2012. The accumulation mode particles were more abundant in May than in September. This difference was due to more air mass flow from lower latitude continental areas, weaker vertical mixing, and less wet scavenging in May than in September, which may have led to a higher amount of long-range transport aerosols entering the Arctic in the spring. The Aitken mode particles observed intermittently in May were produced by nucleation, absent significant external mixing, whereas the accumulation mode particles displayed significant external mixing. The occurrence of an external mixing state was observed more often in May than in September and more often in accumulation mode particles than in Aitken mode particles, and it was associated more with continental air masses (Siberian) than with other air masses. The external mixing of the accumulation mode particles in May may have been caused by multiple sources (i.e., long-range transport aerosols with aging and marine aerosols). These groups of externally mixed particles were subdivided into different mixing structures (internal mixtures of predominantly sulfates and volatile organics without nonvolatile species and internal mixtures of sulfates and nonvolatile components, such as sea salts, minerals, and soot). The variations in the mixing states and chemical species of the Arctic aerosols in terms of their sizes, air masses, and seasons suggest that the continuous size-dependent measurements observed in this study are useful for obtaining better estimates of the effects of these aerosols on climate change.
Hourly concentrations of heavy metals in PM 10 samples were continuously measured using Laser Induced Breakdown Spectroscopy (LIBS) to determine the metal distribution among Asian Dust (AD) events, local pollution events, and nonevents. Quantification of metals was performed by establishing a calibration line between 24 h average data determined by the ICP-MS after filter sampling and LIBS intensity data. It was found that in AD and local pollution events, significant anthropogenic heavy metals, such as Pb, Cr, Ni, and Zn, were detected compared to a nonevent, and that crustal elements (e.g., Al, Ca, Mg) were more abundant in the AD events than those in a local pollution event or nonevent. The AD events were further classified into "nonpolluted AD" and "polluted AD" events, depending on the air mass transport pathways. During "polluted AD" events where the air mass passed over industrialized zones, both crustal (Al, Ca, Mg) and anthropogenic (Cr, Ni, Zn) metal elements simultaneously increased with time, suggesting that the AD particles could not only include crustal elements but also have a significant quantity of anthropogenic heavy metals. The concentration of anthropogenic heavy metals (Cr + Pb + Zn) was the highest in the AD3 event in order of AD3 (polluted) > AD1 (polluted) > local pollution > AD2 (nonpolluted). However, the PM 10 -weighted value (Cr + Pb + Zn/PM 10 ) was the highest in the local pollution event where concentrations of only anthropogenic heavy metals increased. Also, the hourly LIBS data was successfully used to discriminate metal contributions between AD events and local pollution events or among AD events by employing a chemometric method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.