Sarcopenia is a syndrome characterized by a progressive and generalized skeletal muscle mass and strength loss, as well as a poor physical performance, which as strongly been associated with aging. Sedentary lifestyle in the elderly contributes to this condition; however, physical activity improves health, reducing morbidity and mortality. Recent studies have shown that metformin (MTF) can also prevent muscle damage promoting muscular performance. To date, there is great controversy if MTF treatment combined with exercise training improves or nullifies the benefits provided by physical activity. This study is aimed at evaluating the effect of long-term moderate exercise combined with MTF treatment on body composition, strength, redox state, and survival rate during the life of female Wistar rats. In this study, rats performed moderate exercise during 20 of their 24 months of life and were treated with MTF for one year or for 6 months, i.e., from 12 to 24 months old and 18 to 24 months old. The body composition (percentage of fat, bone, and lean mass) was determined using a dual-energy X-ray absorption scanner (DXA), and grip strength was determined using a dynamometer. Likewise, medial and tibial nerve somatosensory evoked potentials were evaluated and the redox state was measured by HPLC, calculating the GSH/GSSG ratio in the gastrocnemius muscle. Our results suggest- that the MTF administration, both in the sedentary and the exercise groups, might activate a mechanism that is directly related to the induction of the hormetic response through the redox state modulation. MTF treatment does not eliminate the beneficial effects of exercise throughout life, and although MTF does not increase muscle mass, it increases longevity.
Growth Differentiation Factor 11 (GDF11), a member of the super family of the Transforming Growth Factor β, has gained more attention in the last few years due to numerous reports regarding its functions in other systems, which are different to those related to differentiation and embryonic development, such as age-related muscle dysfunction, skin biology, metabolism, and cancer. GDF11 is expressed in many tissues, including skeletal muscle, pancreas, kidney, nervous system, and retina, among others. GDF11 circulating levels and protein content in tissues are quite variable and are affected by pathological conditions or age. Although, GDF11 biology had a lot of controversies, must of them are only misunderstandings regarding the variability of its responses, which are independent of the tissue, grade of cellular differentiation or pathologies. A blunt fact regarding GDF11 biology is that its target cells have stemness feature, a property that could be found in certain adult cells in health and in disease, such as cancer cells. This review is focused to present and analyze the recent findings in the emerging research field of GDF11 function in cancer and metabolism, and discusses the controversies surrounding the biology of this atypical growth factor.
Osteosarcopenic obesity (OSO) is characterized by bone density, mass, and muscle strength loss, in conjunction with adipose tissue increase. OSO impairs physical activity and mobility, provoking autonomy loss; also, it is known that augmenting body fat in the elderly decreases life expectancy. The main factors influencing this health deterioration are the inflammatory environment induced by adipose tissue and its infiltration into muscle tissue, which leads to oxidative stress generation. Currently, there are several treatments to delay OSO, among which exercise training stands out because it improves muscle fiber quality and quantity and decreases adipose tissue. We have recently demonstrated that the combined treatment between moderate exercise and metformin slows sarcopenia’s onset by a mechanism that includes adipose reduction and REDOX regulation. On the other hand, tert-butylhydroquinone (tBHQ) is a well-known antioxidant that counteracts oxidative stress. Therefore, to slow down obesity’s harmful effects on muscle mass and bone mineral density, we performed different interventions, including combining a Fartlek-type exercise routine with metformin and tBHQ administration, in a model of middle-aged female Wistar rats with obesity induced with a hypercaloric diet. Our results showed that the combined exercise-metformin-tBHQ treatment increased muscle mass and strength, decreased body weight, body mass index, and fat percentage, and improved redox status, thus increasing animal survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.