Lutjanidae is a family of primarily marine and carnivorous fishes distributed in the Atlantic, Indian, and Pacific oceans, with enormous economic and ecological importance. In order to better clarify the conservative chromosomal evolution of Lutjanidae, we analyzed the evolutionary dynamics of 5 repetitive DNA classes in 5 Lutjanus and in 1 Ocyurus species from the Western Atlantic. The ribosomal 18S sites were generally located in a single chromosome pair, except for L. jocu and L. alexandrei where they are found in 2 pairs. In turn, the 5S rDNA sites are unique, terminal and nonsyntenic with the 18S rDNA sites. In 3 species analyzed, H3 hisDNA genes were found in 1 chromosomal pair. However, while L. jocu presented 2 H3 sites, O. chrysurus showed a noteworthy dispersion of this gene in almost all chromosomes of the karyotype. Retrotransposons Rex1 and Rex3 do not exhibit any association with the explosive distribution of H3 sequences in O. chrysurus. The low compartmentalization of Rex elements, in addition to the general nondynamic distribution of ribosomal and H3 genes, corroborate the karyotype conservatism in Lutjanidae species, also at the microstructural level. However, some "disturbing evolutionary waves" can break down this conservative scenario, as evidenced by the massive random dispersion of H3 hisDNA in the genome of O. chrysurus. The implication of the genomic expansion of H3 histone genes and their functionality remain unknown, although suggesting that they have higher evolutionary dynamics than previously thought.
Overview on Karyotype Stasis in Atlantic Grunts were extensively present in the majority of members from Eupercaria (88% of the clades in this series). These results indicate that karyotype stasis, which is found in a large spectrum of marine fishes, is a multifactorial process in terms of phylogenetic, biological, and biogeographic contexts.
The chromosomal location of representative members of the type I and type II subfamilies of the cytokeratin multigene family was determined using specific cDNA probes in Southern blot hybridization with DNA from somatic cell hybrids. Our results show that the gene encoding human type II cytokeratin 4 resides on chromosome 12 and that encoding type I cytokeratin 15 is located on chromosome 17. The results indicate that cytokeratins are not concentrated in only one cluster. The possibility of the existence of separate type I and type II cytokeratin gene clusters is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.