Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as β-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired β-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.
Glucose-induced oxidative stress is associated with the overproduction of reactive oxygen species (ROS), which may dysregulate the expression of genes controlling insulin secretion leading to β-cell dysfunction, a hallmark of type 2 diabetes mellitus (T2DM). This study investigated the impact of coloured rice phenolic extracts (CRPEs) on the expression of key genes associated with β-cell function in pancreatic β-cells (INS-1E). These genes included glucose transporter 2 (Glut2), silent mating type information regulation 2 homolog 1 (Sirt1), mitochondrial transcription factor A (Tfam), pancreatic/duodenal homeobox protein 1 (Pdx-1) and insulin 1 (Ins1). INS-1E cells were cultured in high glucose (25 mM) to induce glucotoxic stress conditions (HGSC) and in normal glucose conditions (NGC-11.1 mM) to represent normal β-cell function. Cells were treated with CRPEs derived from two coloured rice cultivars, Purple and Yunlu29-red varieties at concentrations ranged from 50 to 250 µg/mL. CRPEs upregulated the expression of Glut2, Sirt1 and Pdx-1 significantly at 250 µg/mL under HGSC. CRPEs from both cultivars also upregulated Glut2, Sirt1, Tfam, Pdx-1 and Ins1 markedly at 250 µg/mL under NGC with Yunlu29 having the greatest effect. These data suggest that CRPEs may reduce β-cell dysfunction in T2DM by upregulating the expression of genes involved in insulin secretion pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.