BackgroundThe steadily growing world population and our ever luxurious life style, along with the simultaneously decreasing fossil resources has confronted modern society with the issue and need of finding renewable routes to accommodate for our demands. Shifting the production pipeline from raw oil to biomass requires efficient processes for numerous platform chemicals being produced with high yield, high titer and high productivity.ResultsIn the present work, we established a de novo bio-based production process for the two carbon-5 platform chemicals 5-aminovalerate and glutarate on basis of the lysine-hyperproducing strain Corynebacterium glutamicum LYS-12. Upon heterologous implementation of the Pseudomonas putida genes davA, encoding 5-aminovaleramidase and davB, encoding lysine monooxygenase, 5-aminovalerate production was established. Related to the presence of endogenous genes coding for 5-aminovalerate transaminase (gabT) and glutarate semialdehyde dehydrogenase, 5-aminovalerate was partially converted to glutarate. Moreover, residual l-lysine was secreted as by-product. The issue of by-product formation was then addressed by deletion of the lysE gene, encoding the l-lysine exporter. Additionally, a putative gabT gene was deleted to enhance 5-aminovalerate production. To fully exploit the performance of the optimized strain, fed-batch fermentation was carried out producing 28 g L−1 5-aminovalerate with a maximal space–time yield of 0.9 g L−1 h−1.ConclusionsThe present study describes the construction of a recombinant microbial cell factory for the production of carbon-5 platform chemicals. Beyond a basic proof-of-concept, we were able to specifically increase the production flux of 5-aminovalerate thereby generating a strain with excellent production performance. Additional improvement can be expected by removal of remaining by-product formation and bottlenecks, associated to the terminal pathway, to generate a strain being applicable as centerpiece for a bio-based production of 5-aminovalerate.
Ectoine is formed in various bacteria as cell protectant against all kinds of stress. Its preservative and protective effects have enabled various applications in medicine, cosmetics, and biotechnology, and ectoine therefore has high commercial value. Industrially, ectoine is produced in a complex high‐salt process, which imposes constraints on the costs, design, and durability of the fermentation system. Here, Corynebacterium glutamicum is upgraded for the heterologous production of ectoine from sugar and molasses. To overcome previous limitations, the ectoine pathway taken from Pseudomonas stutzeri is engineered using transcriptional balancing. An expression library with 185,193 variants is created, randomly combining 19 synthetic promoters and three linker elements. Strain screening discovers several high‐titer mutants with an improvement of almost fivefold over the initial strain. High production thereby particularly relies on a specifically balanced ectoine pathway. In an optimized fermentation process, the new top producer C. glutamicum ectABCopt achieves an ectoine titer of 65 g L−1 and a specific productivity of 120 mg g−1 h−1. This process is the first reported example of a simple fermentation process under low‐salt conditions using well‐established feedstocks to produce ectoine with industrial efficiency. There is a compelling case for more intensive implementation of transcriptional balancing in future metabolic engineering of C. glutamicum.
Microbial electrochemical technologies (MET) are promising to drive metabolic processes for the production of chemicals of interest. They provide microorganisms with an electrode as an electron sink or an electron source to stabilize their redox and/or energy state. Here, we applied an anode as additional electron sink to enhance the anoxic metabolism of the industrial bacterium Corynebacterium glutamicum through an anodic electro-fermentation. In using ferricyanide as extracellular electron carrier, anaerobic growth was enabled and the feedback-deregulated mutant Corynebacterium glutamicum lysC further accumulated L-lysine. Under such oxidizing conditions we achieved L-lysine titers of 2.9 mM at rates of 0.2 mmol/L/hr. That titer is comparable to recently reported L-lysine concentrations achieved by anaerobic production under reductive conditions (cathodic electro-fermentation). However unlike other studies, our oxidative conditions allowed anaerobic cell growth, indicating an improved cellular energy supply during anodic electro-fermentation. In that light, we propose anodic electro-fermentation as the right choice to support C. glutamicum stabilizing its redox and energy state and empower a stable anaerobic production of L-lysine.
Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.