Large-scale multicore architectures create new challenges for garbage collectors (GCs). In particular, throughput-oriented stop-the-world algorithms demonstrate good performance with a small number of cores, but have been shown to degrade badly beyond approximately 8 cores on a 48-core with OpenJDK 7. This negative result raises the question whether the stop-the-world design has intrinsic limitations that would require a radically different approach. Our study suggests that the answer is no, and that there is no compelling scalability reason to discard the existing highly-optimised throughput-oriented GC code on contemporary hardware. This paper studies the default throughput-oriented garbage collector of OpenJDK 7, called Parallel Scavenge. We identify its bottlenecks, and show how to eliminate them using well-established parallel programming techniques. On the SPECjbb2005, SPECjvm2008 and DaCapo 9.12 benchmarks, the improved GC matches the performance of Parallel Scavenge at low core count, but scales well, up to 48~cores.
Large-scale multicore architectures create new challenges for garbage collectors (GCs). In particular, throughput-oriented stop-the-world algorithms demonstrate good performance with a small number of cores, but have been shown to degrade badly beyond approximately 8 cores on a 48-core with OpenJDK 7. This negative result raises the question whether the stop-the-world design has intrinsic limitations that would require a radically different approach. Our study suggests that the answer is no, and that there is no compelling scalability reason to discard the existing highly-optimised throughput-oriented GC code on contemporary hardware. This paper studies the default throughput-oriented garbage collector of OpenJDK 7, called Parallel Scavenge. We identify its bottlenecks, and show how to eliminate them using well-established parallel programming techniques. On the SPECjbb2005, SPECjvm2008 and DaCapo 9.12 benchmarks, the improved GC matches the performance of Parallel Scavenge at low core count, but scales well, up to 48~cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.