Most real-world database applications contain a substantial portion of time-referenced, or temporal, data. Recent advances in temporal query languages show that such database applications could benefit substantially from builtin temporal support in the DBMS. To achieve this, temporal query representation, optimization, and processing mechanisms must be provided. This paper presents a general, algebraic foundation for query optimization that integrates conventional and temporal query optimization and is suitable for providing temporal support both via a stand-alone temporal DBMS and via a layer on top of a conventional DBMS. By capturing duplicate removal and retention and order preservation for all queries, as well as coalescing for temporal queries, this foundation formalizes and generalizes existing approaches.
AbstractÐMost real-world databases contain substantial amounts of time-referenced, or temporal, data. Recent advances in temporal query languages show that such database applications may benefit substantially from built-in temporal support in the DBMS. To achieve this, temporal query representation, optimization, and processing mechanisms must be provided. This paper presents a foundation for query optimization that integrates conventional and temporal query optimization and is suitable for both conventional DBMS architectures and ones where the temporal support is obtained via a layer on top of a conventional DBMS. This foundation captures duplicates and ordering for all queries, as well as coalescing for temporal queries, thus generalizing all existing approaches known to the authors. It includes a temporally extended relational algebra to which SQL and temporal SQL queries may be mapped, six types of algebraic equivalences, concrete query transformation rules that obey different equivalences, a procedure for determining which types of transformation rules are applicable for optimizing a query, and a query plan enumeration algorithm. The presented approach partitions the work required by the database implementor to develop a provably correct query optimizer into four stages: The database implementor has to 1) specify operations formally, 2) design and prove correct appropriate transformation rules that satisfy any of the six equivalence types, 3) augment the mechanism that determines when the different types of rules are applicable to ensure that the enumeration algorithm applies the rules correctly, and 4) ensure that the mapping generates a correct initial query plan.
Time-referenced data are pervasive in most real-world databases. Recent advances in temporal query languages show that such database applications may benefit substantially from built-in temporal support in the DBMS. To achieve this, temporal query optimization and evaluation mechanisms must be provided, either within the DBMS proper or as a source level translation from temporal queries to conventional SQL. This paper proposes a new approach: using a middleware component on top of a conventional DBMS. This component accepts temporal SQL statements and produces a corresponding query plan consisting of algebraic as well as regular SQL parts. The algebraic parts are processed by the middleware, while the SQL parts are processed by the DBMS. The middleware uses performance feedback from the DBMS to adapt its partitioning of subsequent queries into middleware and DBMS parts. The paper describes the architecture and implementation of the temporal middleware component, termed TANGO, which is based on the Volcano extensible query optimizer and the XXL query processing library. Experiments with the system demonstrate the utility of the middleware's internal processing capability and its cost-based mechanism for apportioning the processing between the middleware and the underlying DBMS.
Time-referenced data are pervasive in most real-world databases. Recent advances in temporal query languages show that such database applications may benefit substantially from built-in temporal support in the DBMS. To achieve this, temporal query optimization and evaluation mechanisms must be provided, either within the DBMS proper or as a source level translation from temporal queries to conventional SQL. This paper proposes a new approach: using a middleware component on top of a conventional DBMS. This component accepts temporal SQL statements and produces a corresponding query plan consisting of algebraic as well as regular SQL parts. The algebraic parts are processed by the middleware, while the SQL parts are processed by the DBMS. The middleware uses performance feedback from the DBMS to adapt its partitioning of subsequent queries into middleware and DBMS parts. The paper describes the architecture and implementation of the temporal middleware component, termed TANGO, which is based on the Volcano extensible query optimizer and the XXL query processing library. Experiments with the system demonstrate the utility of the middleware's internal processing capability and its cost-based mechanism for apportioning the processing between the middleware and the underlying DBMS.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.