Communities of symbiotic microorganisms that colonize the gastrointestinal tract play an important role in food digestion and protection against opportunistic microbes. Diet diversity increases the number of symbionts in the intestines, a benefit that is considered to impose no cost for the host organism. However, less is known about the possible immunological investments that hosts have to make in order to control the infections caused by symbiont populations that increase because of diet diversity. Using taxonomical composition analysis of the V3 region, we show that enterococci are the dominating group of bacteria in the midgut of the larvae of the greater wax moth (). We found that the number of colony-forming units of enterococci and expressions of certain immunity-related antimicrobial peptide (AMP) genes such as ,, , and increased in response to a more diverse diet, which in turn decreased the encapsulation response of the larvae. Treatment with antibiotics significantly lowered the expression of all AMP genes. Diet and antibiotic treatment interaction did not affect the expression of and AMP genes, but significantly influenced the expression of, and Taken together, our results suggest that diet diversity influences microbiome diversity and AMP gene expression, ultimately affecting an organism's capacity to mount an immune response. Elevated basal levels of immunity-related genes ( and ) might act as a prophylactic against opportunistic infections and as a mechanism that controls the gut symbionts. This would indicate that a diverse diet imposes higher immunity costs on organisms.
During migrations and ontogeny amphibians change their habitat and feeding, and thus are important in linking terrestrial and aquatic ecosystems. We measured d 13 C and d 15 N values of early stages (egg, embryo, tadpole) and toes of adult frogs Rana temporaria, collected from a small wetland in Lithuania. We compared the isotopic composition of these tissues with potential food sources, excrements of tadpoles, and filled intestinal tracts. We found that d 13 C values in R. temporaria tadpoles were markedly depleted in comparison to adults, eggs or embryos, demonstrating a terrestrial to aquatic shift in energy sources. After the onset of feeding, tadpoles approached isotopic equilibrium with available food (algae and litter). Tadpoles had higher d 15 N than both algae and litter, differing by 3.6 and 2.4%, respectively, and similar d 13 C to these sources. However, tadpole excrements and body tissue diverged, with mean d 13 C values of excrements (-30.3 ± 1.6% SD) more similar to litter (-31.7 ± 1.2% SD) and body tissue d 13 C (-34.8 ± 0.7% SD) more similar to algae (-34.2 ± 4.1% SD). This suggests that algal resources are critical in early life stages of this anuran, particularly at stages characterized by high growth and low development (stages: 25-35).
The causes and consequences of among-individual variation and covariation in behaviours are of substantial interest to behavioural ecology, but the proximate mechanisms underpinning this (co)variation are still unclear. Previous research suggests metabolic rate as a potential proximate mechanism to explain behavioural covariation. We measured the resting metabolic rate (RMR), boldness and exploration in western stutter-trilling crickets, , selected differentially for short and fast development over two generations. After applying mixed-effects models to reveal the sign of the covariation, we applied structural equation models to an individual-level covariance matrix to examine whether the RMR generates covariation between the measured behaviours. All traits showed among-individual variation and covariation: RMR and boldness were positively correlated, RMR and exploration were negatively correlated, and boldness and exploration were negatively correlated. However, the RMR was not a causal factor generating covariation between boldness and exploration. Instead, the covariation between all three traits was explained by another, unmeasured mechanism. The selection lines differed from each other in all measured traits and significantly affected the covariance matrix structure between the traits, suggesting that there is a genetic component in the trait integration. Our results emphasize that interpretations made solely from the correlation matrix might be misleading.
Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.