We demonstrate a simple method to fabricate all solid state, thermally reduced Graphene Oxide (TRGO) microsupercapacitors (µ-SCs) prepared using the atmospheric pressure chemical vapor deposition (APCVD) and a mask-free axiDraw sketching apparatus. The Fourier transform infrared spectroscopy (FTIR) shows the extermination of oxygen functional groups as the reducing temperature (RT) increases, while the Raman shows the presence of the defect and graphitic peaks. The electrochemical performance of the µ-SCs showed cyclic voltammetry (CV) potential window of 0–0.8 V at various scan rates of 5–1000 mVs−1 with a rectangular shape, depicting characteristics of electric double layer capacitor (EDLC) behavior. The µ-SC with 14 cm−2 (number of digits per unit area) showed a 46% increment in capacitance from that of 6 cm−2, which is also higher than the µ-SCs with 22 and 26 cm−2. The TRGO-500 exhibits volumetric energy and power density of 14.61 mW h cm−3 and 142.67 mW cm−3, respectively. The electrochemical impedance spectroscopy (EIS) showed the decrease in the equivalent series resistance (ESR) as a function of RT due to reduction of the resistive functional groups present in the sample. Bode plot showed a phase angel of −85° for the TRGO-500 µ-SC device. The electrochemical performance of the µ-SC devices can be tuned by varying the RT, number of digits per unity area, and connection configuration (parallel or series).
In this work, a thermally reduced graphene oxide (TRGO) thin film on microscopic glass was prepared using spray coating and atmospheric pressure chemical vapour deposition. The structure of TRGO was analysed using X-ray diffraction (XRD) spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, and ultraviolet–visible spectroscopy (UV-Vis) suggesting a decrease in oxygen functional groups (OFGs), leading to the restacking, change in colour, and transparency of the graphene sheets. Raman spectrum deconvolution detailed the film’s parameters, such as the crystallite size, degree of defect, degree of amorphousness, and type of defect. The electrochemical performance of the microsupercapacitor (µ-SC) showed a rectangular cyclic voltammetry shape, which was maintained at a high scan rate, revealing phenomenal electric double-layer capacitor (EDLC) behaviour. The power law and Trasatti’s analysis indicated that low-temperature TRGO µ-SC is dominated by diffusion-controlled behaviour, while higher temperature TRGO µ-SC is dominated by surface-controlled behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.