Antibiotic pharmacodynamics is an evolving science that focuses on the relationship between drug concentration and pharmacologic effect, which is an antibiotic-induced bacterial death that also can manifest as an adverse drug reaction. The pharmacologic action of antibiotics usually can be described as concentration dependent or independent, although such classifications are highly reliant on the specific antibiotic and bacterial pathogen being studied. Quantitative pharmacodynamic parameters, such as ratio of the area under the concentration-time curve during a 24-hour dosing period to minimum inhibitory concentration (AUC0-24:MIC), ratio of maximum serum antibiotic concentration to MIC (Cmax:MIC), and duration of time that antibiotic concentrations exceed MIC (T>MIC), have been proposed as likely predictors of clinical and microbiologic success or failure for different pairings of antibiotic and bacteria. Thus far, most pharmacodynamic data reported have focused on fluoroquinolones, but work has been conducted on vancomycin, beta-lactams, macrolides, aminoglycosides, and other antibiotics. Despite the development of a number of different pharmacodynamic modeling systems, remarkable agreement exists between in vitro, animal, and limited human data. Although still somewhat premature and requiring additional clinical validation, antibiotic pharmacodynamics will likely advance on four fronts: the science should prove to be extremely useful and represent a cost-effective and efficient method to help develop new antibiotics; formulary committees will likely use pharmacodynamic parameters to assist in differentiating antibiotics of the same chemical class in making antibiotic formulary selections; pharmacodynamic principles will likely be used to design optimal antibiotic strategies for patients with severe infections; and limited data to date suggest that the application of pharmacodynamic concepts may limit or prevent the development of antibiotic resistance. The study of antibiotic pharmacodynamics appears to hold great promise and will likely become a routine part of our daily clinical practices.
This investigation explored pharmacodynamic characteristics of fluoroquinolones against Bacteroides thetaiotamicron and the potential for development of resistance. An in vitro model was used to generate kill curves with three fluoroquinolones at various area under the concentration-time curve (AUC)/MIC ratios. Concentration-independent killing was observed. Increases in MICs were noted following exposure to fluoroquinolones at AUC/MIC ratios of 6 to 14.We have previously reported fluoroquinolone resistance in clinical and ATCC strains of Bacteroides fragilis while conducting experiments with fluoroquinolones in an in vitro pharmacodynamic model (8; M. L.
Six strains of staphylococci were exposed to levofloxacin, moxifloxacin, or trovafloxacin in an in vitro pharmacodynamic model under both aerobic and anaerobic conditions. Each agent demonstrated a rapid 3-log 10 kill versus susceptible isolates regardless of condition. Against clinical isolates with reduced susceptibility, regrowth occurred by 24 h and was frequently associated with further increases in MICs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.