Pancreatic cancer is one of the most lethal human cancers, with almost identical incidence and mortality rates. Curcumin, derived from the rhizome of Curcuma longa, has a long history of use as coloring agent and for a wide variety of disorders. Here, the antiproliferative activity of curcumin and its modulatory effect on gene expression of pancreatic cancer cell lines were investigated. The effect of curcumin on cellular proliferation and viability was monitored by sulphurhodamine B assay. Apoptotic effect was evaluated by flow cytometry and further confirmed by measuring amount of cytoplasmic histone-associated DNA fragments. Analysis of gene expression was performed with and without curcumin treatment using microarray expression profiling techniques. Array results were confirmed by real-time PCR. ingenuity pathway analysis (IPA) has been used to classify the list of differentially expressed genes and to indentify common biomarkergenes modulating the chemopreventive effect of curcumin. Results showed that curcumin induces growth arrest and apoptosis in pancreatic cancer cell lines. Its effect was more obvious on the highly COX-2 expressing cell line. Additionally, the expression of 366 and 356 cancer-related genes, involved in regulation of apoptosis, cell cycle, metastasis, was significantly altered after curcumin treatment in BxPC-3 and MiaPaCa-2 cells, respectively. Our results suggested that up-regulation of the extrinsic apoptotic pathway was among signaling pathways modulating the growth inhibitory effects of curcumin on pancreatic cancer cells. Curcumin effect was mediated through activation of TNFR, CASP 8, CASP3, BID, BAX, and down-regulation of NFκB, NDRG 1, and BCL2L10 genes.
Abstract. The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4×2 2 factorial design was employed for optimization of the sustainedrelease layer and to explore the effect of lipid type (X 1 ), drug-lipid ratio (X 2 ), and filler type (X 3 ) on the percentage drug released at 8, 12, and 24 h (Y 1 , Y 2 , and Y 3 ) as dependent variables. Sixteen TBS sustained-release matrices (F1-F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug-Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bilayer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.