The precise regulation of gene expression is fundamental to neurodevelopment, plasticity, and cognitive function. While several studies have deeply profiled mRNA dynamics in the developing human brain, there is a fundamental gap in our understanding of accompanying translational regulation. We perform ribosome profiling from more than 70 human prenatal and adult cortex samples across ontogeny and into adulthood, mapping translation events at nucleotide resolution. In addition to characterizing the translational regulation of annotated open reading frames (ORFs), we identify thousands of previously unknown translation events, including small open reading frames (sORFs) that give rise to human-and/or brain-specific microproteins, many of which we independently verify using size-selected proteomics.Ribosome profiling in stem cell-derived human neuronal cultures further corroborates these findings and shows that several neuronal activity-induced long non-coding RNAs (lncRNAs), including LINC00473, a primate-specific lncRNA implicated in depression, encode previously undescribed microproteins. Physicochemical analysis of these brain microproteinss identifies a large class harboring arginine-glycine-glycine (RGG) repeats as strong candidates for regulating RNA metabolism. Moreover, we find that, collectively, these previously unknown human brain sORFs are enriched for variants associated with schizophrenia. In addition to significantly expanding the translational landscape of the developing brain, this atlas will serve as a rich resource for the annotation and functional interrogation of thousands of previously unknown brain-specific protein products. MAINThe human brain leverages extraordinary protein diversity to execute developmental programs, organize neural circuits, and perform complex cognitive tasks 1 . Proteomic diversity is
The precise regulation of gene expression is fundamental to neurodevelopment, plasticity, and cognitive function. While several studies have deeply profiled mRNA dynamics in the developing human brain, there is a fundamental gap in our understanding of accompanying translational regulation. We perform ribosome profiling from more than 70 human prenatal and adult cortex samples across ontogeny and into adulthood, mapping translation events at nucleotide resolution. In addition to characterizing the translational regulation of annotated open reading frames (ORFs), we identify thousands of previously unknown translation events, including small open reading frames (sORFs) that give rise to human- and/or brain-specific microproteins, many of which we independently verify using size-selected proteomics. Ribosome profiling in stem cell-derived human neuronal cultures further corroborates these findings and shows that several neuronal activity-induced long non-coding RNAs (lncRNAs), including LINC00473, a primate-specific lncRNA implicated in depression, encode previously undescribed microproteins. Physicochemical analysis of these brain microproteinss identifies a large class harboring arginine-glycine-glycine (RGG) repeats as strong candidates for regulating RNA metabolism. Moreover, we find that, collectively, these previously unknown human brain sORFs are enriched for variants associated with schizophrenia. In addition to significantly expanding the translational landscape of the developing brain, this atlas will serve as a rich resource for the annotation and functional interrogation of thousands of previously unknown brain-specific protein products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.