Purpose: In this paper, we propose a convolutional neural network (CNN)-based efficient model observer for breast computed tomography (CT) images. Methods: We first showed that the CNN-based model observer provided similar detection performance to the ideal observer (IO) for signal-known-exactly and background-known-exactly detection tasks with an uncorrelated Gaussian background noise image. We then demonstrated that a singlelayer CNN without a nonlinear activation function provided similar detection performance in breast CT images to the Hotelling observer (HO). To train the CNN-based model observer, we generated simulated breast CT images to produce a training dataset in which different background noise structures were generated using filtered back projection with a ramp, or a Hanning weighted ramp, filter. Circular, elliptical, and spiculated signals were used for the detection tasks. The optimal depth and the number of channels for the CNN-based model observer were determined for each task. The detection performances of the HO and a channelized Hotelling observer (CHO) with Laguerre-Gauss (LG) and partial least squares (PLS) channels were also estimated for comparison. Results: The results showed that the CNN-based model observer provided higher detection performance than the HO, LG-CHO, and PLS-CHO for all tasks. In addition, it was shown that the proposed CNN-based model observer provided higher detection performance than the HO using a smaller training dataset. Conclusions: In the presence of nonlinearity in the CNN, the proposed CNN-based model observer showed better performance than other linear observers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.