The temperature dependences of the Kerr coefficient and the response time in the electrooptical effect of polymer-stabilised blue phases (PSBPs) of liquid crystals (LCs) with various polymer concentrations are investigated in a wide temperature range including temperatures lower than room temperature. The Kerr coefficients are found to abruptly decrease at low temperature, and the response time-temperature relation obeys the Arrhenius equation. For comparison of the Kerr effect and molecular rotation at low temperature, various physical properties such as permittivity, rotational relaxation time and dielectric relaxation strength of the PSBPs are investigated. The electrooptical response times and the dielectric relaxation times show different temperature dependences, and rotation of LC molecules in PSBPs was sufficiently active at low temperature and not strongly affected by the polymer.
The relationship between dielectric and electro‐optical properties of polymer‐stabilized blue phases (PSBPs) with different polymer concentration was investigated at low temperature. Dynamics of LC molecular rotation and local reorientation of director in PSBPs are affected differently by polymer network. Through reflection spectra, we found that the ordered structure of PSBPs suddenly decreased at low temperature, and PSBPs with lower polymer ratio and longer chiral pitch maintained the ordered structure until lower temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.