Chemical conjugates comprising synthetic Toll-like receptor ligands (TLR-L) covalently bound to antigenic synthetic long peptides (SLP) are attractive vaccine modalities, which can induce robust CD8þ T-cell immune responses. Previously, we have shown that the mechanism underlying the power of TLR-L SLP conjugates is improved delivery of the antigen together with a dendritic cell activation signal. In the present study, we have expanded the approach to tumor-specific CD4 þ as well as CD8 þ T-cell responses and in vivo studies in two nonrelated aggressive tumor models. We show that TLR2-L SLP conjugates have superior mouse CD8 þ and CD4
BackgroundLigands for the Toll-like receptor (TLR) family can induce activation of cells of the innate immune system and are widely studied for their potential to enhance adaptive immunity. Conjugation of TLR2-ligand Pam3CSK4 to synthetic long peptides (SLPs) was shown to strongly enhance the induction of antitumor immunity. To further improve cancer vaccination, we have previously shown that the novel TLR2-L Amplivant (AV), a modified Pam3CSK4, potentiates the maturation effects on murine DCs. In the current study, we further assessed the immunological properties of AV.MethodsNaïve mice were vaccinated with a conjugate of either Pam3CSK4 or AV and an SLP to assess specific T cell priming efficiency in vivo. The potency of AV and Pam3CSK4, either as free compounds or conjugated to different SLPs, to mature murine DCs was compared by stimulating murine dendritic cells overnight followed by ELISA and flow cytometry analysis. Murine tumor experiments were carried out by vaccinating mice carrying established HPV16 E6 and E7-expressing tumors and subsequently analyzing myeloid and lymphoid cells infiltrating the tumor microenvironment. Furthermore, tumor outgrowth after vaccination was monitored to enable comparison of the efficiency to induce antitumor immunity by Pam3CSK-SLP and AV-SLP conjugates. To enhance therapeutic efficacy, AV-SLP conjugate vaccination was combined with ablative therapies to assess whether synergism between such therapies would occur.ResultsSLPs conjugated to AV induce stronger DC maturation, in vivo T cell priming and antitumor immunity compared to conjugates with Pam3CSK4. Interestingly, AV-SLP conjugates modulate the macrophage populations in the tumor microenvironment, correlating with a therapeutic effect in an aggressive murine tumor model. The potency of AV-SLP conjugates in cancer vaccination operates optimally in combination with chemotherapy or photodynamic therapy.ConclusionThese data allow further optimization of vaccination-based immunotherapy of cancer by use of the improved TLR2-ligand Amplivant.Electronic supplementary materialThe online version of this article (10.1186/s40425-018-0455-2) contains supplementary material, which is available to authorized users.
The potency of human papillomavirus type 16 (HPV16)-encoded synthetic long peptides (SLP), conjugated to an optimized Toll-like receptor 2 ligand (TLR2-L), was assessed in ex vivo activation of HPV16+ cancer patient-derived T cells. Two highly immunogenic SLP sequences derived from the oncogenic E6 protein of HPV16 were selected and conjugated to a Pam3CSK4-based TLR2-L under GMP conditions. Both conjugates were able to mature human DCs in vitro and to activate human skin-derived antigen-presenting cells (APCs) upon intradermal injection in an ex vivo skin model, associated with induction of a favorable chemokine profile to attract and activate T cells. The conjugated SLPs were efficiently processed by APCs, since HPV16-specific CD4+ and CD8+ T-cell clones isolated from HPV16+ cervical tumors proliferated in response to both conjugates. The TLR2-L SLP conjugates significantly enhanced ex vivo T helper type 1 T-cell activation in cell suspensions obtained from tumor-draining lymph nodes (LN) resected during hysterectomy of HPV16+ cervical cancer patients. These results show that TLR2-L SLP conjugates can activate circulating or LN-derived tumor-specific T cells, a promising outcome for studying these two conjugates in a phase I/II clinical safety and immunogenicity trial.
New analogues (UPam) of triacylated lipopeptide Pam3CysSK4, a popular agonist of Toll-like receptor 2 (TLR2), were designed making use of the cocrystal structure of a TLR2 heterodimer (with TLR1) with Pam3CysSK4. Twenty-two UPam derivatives that feature an N-tetradecylcarbamyl chain to mimic the native N-palmitoyl moiety and various small amino acids residues at the penultimate N-terminal position were prepared via solid-phase synthesis. In vitro evaluation of immunostimulatory properties revealed new potent TLR2 ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.