Analysis of urinary oligosaccharides by thin-layer chromatography (TLC) is used as screening procedure for 10 different lysosomal diseases. We tested the usefulness of HPLC in screening, using a CarboPac PA1 column (Dionex), pulsed amperometric detection (PAD), and post-column derivatization (PCD). Patterns from six types of oligosaccharidoses were compared with normal urinary patterns and with the TLC patterns. PAD appeared to be nonspecific and therefore is applicable only to desalted urine samples. PCD was more specific and applicable to nondesalted urine samples, albeit with a lower resolving power. Peaks in urines from oligosaccharidoses patients were identified on the basis of retention times of commercially available oligosaccharides or TLC bands after isolation and HPLC of the corresponding oligosaccharides. Abnormal oligosaccharide peaks were seen in urines from patients with alpha-mannosidosis, GM1-gangliosidosis (juvenile), GM2-gangliosidosis (Sandhoff disease), Pompe disease, and beta-mannosidosis. HPLC detected no abnormal oligosaccharides in urine from patients with fucosidosis. Although TLC is a simple and reliable screening procedure for detecting classical lysosomal diseases with oligosaccharide excretion, HPLC, by its higher resolution and possibility of quantification, can more generally be used for recognition of abnormal oligosaccharides or detection of increased excretion or content for known oligosaccharides in urine, other body fluids, and cells.
A genetic map of the Y chromosome of Drosophila hydei has been constructed from deletion/complementation experiments, with the aid of male sterile mutants of the Y chromosome. A central conclusion of our experiments is that not more than a single complementation group can be detected in each of the lampbrush loop forming sites. Additional complementation groups, functionally independent of lampbrush loops, reside between these loci. Six complementation groups have been defined by several methods of mapping. An additional ten complementation groups are indicated, but their exact definition requires further investigation. The "synthetic sterility" of mutations in these ten loci contributes to the difficulty in unequivocally establishing their individual boundaries. Mapping problems also arise from the instability of certain mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.