We use the ATLAS 3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q = 0.25 and standard deviation σ q = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and σ q = 0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrisations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.
We use high-resolution (∼0. 1) F814W Advanced Camera for Surveys (ACS) images from the Hubble Space Telescope ACS Treasury survey of the Coma cluster at z ∼ 0.02 to study bars in massive disk galaxies (S0s), as well as low-mass dwarf galaxies in the core of the Coma cluster, the densest environment in the nearby universe. Our study helps to constrain the evolution of bars and disks in dense environments and provides a comparison point for studies in lower density environments and at higher redshifts. Our results are: (1) we characterize the fraction and properties of bars in a sample of 32 bright (M V −18, M * > 10 9.5 M ) S0 galaxies, which dominate the population of massive disk galaxies in the Coma core. We find that the measurement of a bar fraction among S0 galaxies must be handled with special care due to the difficulty in separating unbarred S0s from ellipticals, and the potential dilution of the bar signature by light from a relatively large, bright bulge. The results depend sensitively on the method used: the bar fraction for bright S0s in the Coma core is 50% ± 11%, 65% ± 11%, and 60% ± 11% based on three methods of bar detection, namely, strict ellipse fit criteria, relaxed ellipse fit criteria, and visual classification. (2) We compare the S0 bar fraction across different environments (the Coma core, A901/902, and Virgo) adopting the critical step of using matched samples and matched methods in order to ensure robust comparisons. We find that the bar fraction among bright S0 galaxies does not show a statistically significant variation (within the error bars of ±11%) across environments which span two orders of magnitude in galaxy number density (n ∼ 300-10,000 galaxies Mpc −3 ) and include rich and poor clusters, such as the core of Coma, the A901/902 cluster, and Virgo. We speculate that the bar fraction among S0s is not significantly enhanced in rich clusters compared to low-density environments for two reasons. First, S0s in rich clusters are less prone to bar instabilities as they are dynamically heated by harassment and are gas poor as a result of ram pressure stripping and accelerated star formation. Second, high-speed encounters in rich clusters may be less effective than slow, strong encounters in inducing bars. (3) We also take advantage of the high resolution of the ACS (∼50 pc) to analyze a sample of 333 faint (M V > −18) dwarf galaxies in the Coma core. Using visual inspection of unsharp-masked images, we find only 13 galaxies with bar and/or spiral structure. An additional eight galaxies show evidence for an inclined disk. The paucity of disk structures in Coma dwarfs suggests that either disks are not common in these galaxies or that any disks present are too hot to develop instabilities.
No abstract
We examine the relative orientations of radio jets, central dust and stars in low-power (i.e., FR I and FR I/II) radio galaxies. We use the position angles of jet and dust to constrain the three-dimensional angle θDJ between jet and dust. For galaxies with filamentary dust 'lanes' (which tend to be misaligned with the galaxy major axis) the jet is approximately perpendicular to the dust structure, while for galaxies with elliptical dust distributions (typically aligned with the galaxy major axis) there is a much wider distribution of θDJ. The dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped, unsettled dust structures. We consider two scenarios to explain the dust/jet orientation dichotomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.