Several epidemiological and preclinical studies supported the protective effect of coffee on Alzheimer’s disease (AD). However, it is still unknown whether coffee is specifically related with reduced brain AD pathologies in human. Hence, this study aims to investigate relationships between coffee intake and in vivo AD pathologies, including cerebral beta-amyloid (Aβ) deposition, the neurodegeneration of AD-signature regions, and cerebral white matter hyperintensities (WMH). A total of 411 non-demented older adults were included. Participants underwent comprehensive clinical assessment and multimodal neuroimaging including [11C] Pittsburgh compound B-positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance imaging scans. Lifetime and current coffee intake were categorized as follows: no coffee or <2 cups/day (reference category) and ≥2 cups/day (higher coffee intake). Lifetime coffee intake of ≥2 cups/day was significantly associated with a lower Aβ positivity compared to coffee intake of <2 cups/day, even after controlling for potential confounders. In contrast, neither lifetime nor current coffee intake was not related to hypometabolism, atrophy of AD-signature region, and WMH volume. The findings suggest that higher lifetime coffee intake may contribute to lowering the risk of AD or related cognitive decline by reducing pathological cerebral amyloid deposition.
Background: Despite known associations of lower serum uric acid (UA) with Alzheimer's disease (AD) dementia or AD-related cognitive impairment, little is known regarding the underlying patho-mechanisms. We aimed to examine the relationships of serum UA with in vivo AD pathologies including cerebral beta-amyloid (Aβ) and tau deposition, AD-signature region cerebral glucose metabolism (AD-CM), and white matter hyperintensities (WMH). We also investigated the association between serum UA and cognitive performance, and then assessed whether such an association is mediated by the brain pathologies. Methods: A total of 430 non-demented older adults underwent comprehensive clinical assessments, measurement of serum UA level, and multimodal brain imaging, including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging scans. Mini-Mental State Examination (MMSE) and word list recall (WLR) test scores were used to measure cognitive performance. Results: Serum UA level was significantly associated with AD-CM, but not with Aβ deposition, tau deposition, or WMH volume. Serum UA levels also had significant association with WLR and marginal association with MMSE; such associations disappeared when AD-CM was controlled as a covariate, indicating that AD-CM has a mediating effect. Conclusion: The findings of the present study indicate that there is an association of low serum UA with AD-related cerebral hypometabolism, and whether this represents a causal relationship remains to be determined.
Background Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by the hallmark finding of cerebral amyloid deposition. Many researchers have tried to predict the existence of cerebral amyloid deposition by using easily accessible blood plasma samples, but the effectiveness of such strategies remains controversial. Methods We developed a new multiplex kit, the QPLEX™ Alz plus assay kit, which uses proteomics-based blood biomarkers to prescreen for cerebral amyloid deposition. A total of 300 participants who underwent Pittsburgh compound B (PiB)-positron emission tomography (PET) which allows imaging of cerebral amyloid deposition were included in this study. We compared the levels of QPLEX™ biomarkers between patients who were classified as PiB-negative or PiB-positive, regardless of their cognitive function. Logistic regression analysis followed by receiver operating characteristic (ROC) curve analysis was performed. The kit accuracy was tested using a randomized sample selection method. Results The results obtained using our assay kit reached 89.1% area under curve (AUC) with 80.0% sensitivity and 83.0% specificity. Further validation of the QPLEX™ Alz plus assay kit using a randomized sample selection method showed an average accuracy of 81.5%. Conclusions Our QPLEX™ Alz plus assay kit provides preliminary evidence that it can be used as blood marker to predict cerebral amyloid deposition but independent validation is needed.
We aimed to examine the feasibility and effectiveness of a multidomain intervention including intensive and maintenance programs for reducing the risk of dementia in at-risk older adults. Community-dwelling older adults (aged ≥60 years) without dementia but having several risk factors for dementia (N = 32; 89% female; mean age ± standard deviation, 76.8 ± 4.7 years) were assigned to three parallel programs: intensive plus maintenance (INT+MNT), intensive only (INTonly), and active control. Subjects in INT+MNT and INT-only groups participated in a 4-week intensive group-based lifestyle modification program that focused on physical activity, vascular risk factors, dietary habits, cognitive activities, and social engagement. INT+MNT participants underwent an additional 20-week maintenance program to consolidate modified habits. The modified Australian National University-Alzheimer's Disease Risk Index (ANU-ADRI) score was used as the primary outcome measure for dementia risk. The changes in ANU-ADRI scores exhibited a significant group-by-time interaction: the INT+MNT group showed significant improvement at 24 weeks ( = -6.05; SE = 1.86; p = 0.002), while the INT-only group
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.