Introduction: Testing for active SARS-CoV-2 infection is a fundamental tool in the public health measures taken to control the COVID-19 pandemic. Because of the overwhelming use of SARS-CoV-2 reverse transcription (RT)-PCR tests worldwide, the availability of test kits has become a major bottleneck and the need to increase testing throughput is rising. We aim to overcome these challenges by pooling samples together, and performing RNA extraction and RT-PCR in pools. Methods: We tested the efficiency and sensitivity of pooling strategies for RNA extraction and RT-PCR detection of SARS-CoV-2. We tested 184 samples both individually and in pools to estimate the effects of pooling. We further implemented Dorfman pooling with a pool size of eight samples in large-scale clinical tests. Results: We demonstrated pooling strategies that increase testing throughput while maintaining high sensitivity. A comparison of 184 samples tested individually and in pools of eight samples showed that test results were not significantly affected. Implementing the eight-sample Dorfman pooling to test 26 576 samples from asymptomatic individuals, we identified 31 (0.12%) SARS-CoV-2 positive samples, achieving a 7.3-fold increase in throughput. Discussion: Pooling approaches for SARS-CoV-2 testing allow a drastic increase in throughput while maintaining clinical sensitivity. We report the successful large-scale pooled screening of asymptomatic
Pooling multiple swab samples prior to RNA extraction and real-time reverse-transcription (RT-PCR) analysis has been proposed as a strategy to reduce costs and increase throughput of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests. However, reports on practical large-scale group testing for SARS-CoV-2 have been scant. Key open questions concern reduced sensitivity due to sample dilution, the rate of false positives, the actual efficiency (number of tests saved by pooling), and the impact of infection rate in the population on assay performance. Here we report an analysis of 133,816 samples collected between April-September 2020 and tested by Dorfman pooling for the presence of SARS-CoV-2. We spared 76% of RNA extraction and RT-PCR tests, despite the frequently changing prevalence (0.5%-6%). We observed pooling efficiency and sensitivity that exceeded theoretical predictions, which resulted from the non-random distribution of positive samples in pools. Overall, our findings support the use of pooling for efficient large-scale SARS-CoV-2 testing.
Little is known about mechanisms that drive the development of progressive multiple sclerosis (MS), although inflammatory factors, such as macrophage migration inhibitory factor (MIF), its homolog D-dopachrome tautomerase (D-DT), and their common receptor CD74 may contribute to disease worsening. Our findings demonstrate elevated MIF and D-DT levels in males with progressive disease compared with relapsing-remitting males (RRMS) and female MS subjects, with increased levels of CD74 in females vs. males with high MS disease severity. Furthermore, increased MIF and D-DT levels in males with progressive disease were significantly correlated with the presence of two high-expression promoter polymorphisms located in the gene, a -794CATT microsatellite repeat and a -173 G/C SNP. Conversely, mice lacking MIF or D-DT developed less-severe signs of experimental autoimmune encephalomyelitis, a murine model of MS, thus implicating both homologs as copathogenic contributors. These findings indicate that genetically controlled high MIF expression (and D-DT) promotes MS progression in males, suggesting that these two factors are sex-specific disease modifiers and raising the possibility that aggressive anti-MIF treatment of clinically isolated syndrome or RRMS males with a high-expresser genotype might slow or prevent the onset of progressive MS. Additionally, selective targeting of MIF:CD74 signaling might provide an effective, trackable therapeutic approach for MS subjects of both sexes.
Macrophage migration inhibitory factor (MIF) and its receptor, CD74, are pivotal regulators of the immune system. Here we demonstrate for the first time that partial MHC class II constructs comprised of linked β1α1 domains with covalently attached antigenic peptides (also referred to as recombinant T-cell receptor ligands - RTLs) can inhibit MIF activity by not only blocking the binding of rhMIF to immunopurified CD74, but also down-regulating CD74 cell-surface expression. This bi-functional inhibition of MIF/CD74 interactions blocked downstream MIF effects, including enhanced secretion of proinflammatory cytokines, anti-apoptotic activity and inhibition of random migration that all contribute to the reversal of clinical and histological signs of experimental autoimmune encephalomyelitis (EAE). Moreover, we demonstrate that enhanced CD74 cell surface expression on monocytes in mice with EAE and subjects with multiple sclerosis (MS) can be down-regulated by humanized RTLs, resulting in reduced MIF binding to the cells. Thus, binding of partial MHC complexes to CD74 blocks both the accessibility and availability of CD74 for MIF binding and downstream inflammatory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.