This paper proposes to use a frequency based cache admission policy in order to boost the effectiveness of caches subject to skewed access distributions. Given a newly accessed item and an eviction candidate from the cache, our scheme decides, based on the recent access history, whether it is worth admitting the new item into the cache at the expense of the eviction candidate.Realizing this concept is enabled through a novel approximate LFU structure called TinyLFU, which maintains an approximate representation of the access frequency of a large sample of recently accessed items. TinyLFU is very compact and light-weight as it builds upon Bloom filter theory.We study the properties of TinyLFU through simulations of both synthetic workloads as well as multiple real traces from several sources. These simulations demonstrate the performance boost obtained by enhancing various replacement policies with the TinyLFU eviction policy. Also, a new combined replacement and eviction policy scheme nicknamed W-TinyLFU is presented. W-TinyLFU is demonstrated to obtain equal or better hit-ratios than other state of the art replacement policies on these traces. It is the only scheme to obtain such good results on all traces.
Monitoring tasks, such as anomaly and DDoS detection, require identifying frequent flow aggregates based on common IP prefixes. These are known as hierarchical heavy hitters (HHH), where the hierarchy is determined based on the type of prefixes of interest in a given application. The per packet complexity of existing HHH algorithms is proportional to the size of the hierarchy, imposing significant overheads.In this paper, we propose a randomized constant time algorithm for HHH. We prove probabilistic precision bounds backed by an empirical evaluation. Using four real Internet packet traces, we demonstrate that our algorithm indeed obtains comparable accuracy and recall as previous works, while running up to 62 times faster. Finally, we extended Open vSwitch (OVS) with our algorithm and showed it is able to handle 13.8 million packets per second. In contrast, incorporating previous works in OVS only obtained 2.5 times lower throughput.
Abstract-Network management protocols often require timely and meaningful insight about per flow network traffic. This paper introduces Randomized Admission Policy (RAP) -a novel algorithm for the frequency and top-k estimation problems, which are fundamental in network monitoring. We demonstrate space reductions compared to the alternatives by a factor of up to 32 on real packet traces and up to 128 on heavy-tailed workloads. For top-k identification, RAP exhibits memory savings by a factor of between 4 and 64 depending on the workloads' skewness. These empirical results are backed by formal analysis, indicating the asymptotic space improvement of our probabilistic admission approach. Additionally, we present d-Way RAP, a hardware friendly variant of RAP that empirically maintains its space and accuracy benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.