Receptor desensitization is accomplished by accelerated endocytosis and degradation of ligand-receptor complexes. An in vitro reconstituted system indicates that Cbl adaptor proteins directly control downregulation of the receptor for the epidermal growth factor (EGFR) by recruiting ubiquitin-activating and -conjugating enzymes. We infer a sequential process initiated by autophosphorylation of EGFR at a previously identified lysosome-targeting motif that subsequently recruits Cbl. This is followed by tyrosine phosphorylation of c-Cbl at a site flanking its RING finger, which enables receptor ubiquitination and degradation. Whereas all three members of the Cbl family can enhance ubiquitination, two oncogenic Cbl variants, whose RING fingers are defective and phosphorylation sites are missing, are unable to desensitize EGFR. Our study identifies Cbl proteins as components of the ubiquitin ligation machinery and implies that they similarly suppress many other signaling pathways.
Ligand-induced down-regulation of two growth factor receptors, EGF receptor (ErbB-1) and ErbB-3, correlates with differential ability to recruit c-Cbl, whose invertebrate orthologs are negative regulators of ErbB. We report that ligand-induced degradation of internalized ErbB-1, but not ErbB-3, is mediated by transient mobilization of a minor fraction of c-Cbl into ErbB-1-containing endosomes. This recruitment depends on the receptor's tyrosine kinase activity and an intact carboxy-terminal region. The alternative fate is recycling of internalized ErbBs to the cell surface. Cbl-mediated receptor sorting involves covalent attachment of ubiquitin molecules, and subsequent lysosomal and proteasomal degradation. The oncogenic viral form of Cbl inhibits down-regulation by shunting endocytosed receptors to the recycling pathway. These results reveal an endosomal sorting machinery capable of controlling the fate, and, hence, signaling potency, of growth factor receptors.
The ErbB family includes four homologous transmembrane tyrosine kinases. Whereas ErbB-1 binds to the epidermal growth factor (EGF), both ErbB-3 and ErbB-4 bind to the Neu differentiation factors (NDFs, or neuregulins), and ErbB-2, the most oncogenic family member, is an orphan receptor whose function is still unknown. Because previous lines of evidence indicated the existence of interreceptor interactions, we used ectopic expression of individual ErbB proteins and their combinations to analyze the details of receptor cross talks. We show that 8 of 10 possible homo-and heterodimeric complexes of ErbB proteins can be hierarchically induced by ligand binding. Although ErbB-2 binds neither ligand, even in a heterodimeric receptor complex, it is the preferred heterodimer partner of the three other members, and it favors interaction with ErbB-3. Selective receptor overexpression in human tumor cells appears to bias the hierarchical relationships. The ordered network is reflected in receptor transphosphorylation, ErbB-2-mediated enhancement of ligand affinities, and remarkable potentiation of mitogenesis by a coexpressed ErbB-2. The observed superior ability of ErbB-2 to form heterodimers, in conjunction with its uniquely high basal tyrosine kinase activity, may explain why ErbB-2 overexpression is associated with poor prognosis.Polypeptide growth factors regulate cellular growth by binding to surface receptors with intrinsic tyrosine kinase activity (14,54,61). These receptor tyrosine kinases constitute a family of related proteins that have been classified into subgroups on the basis of their structural homology. The receptor for epidermal growth factor (EGF), also called ErbB-1 or HER-1, is the prototype of the type I subfamily, which includes three additional members: ErbB-2/Neu, ErbB-3, and ErbB-4. Whereas ErbB-1 binds multiple distinct ligands that share the EGFlike motif (33), all of the known ligands of ErbB-3 and ErbB-4 are isoforms of the Neu differentiation factor (NDF, or neuregulin) (8,41,53), and no completely characterized ligand binds to ErbB-2 (12). Nevertheless, ErbB-2 has been implicated more than other transmembrane tyrosine kinases in cancer development (21, 50). Overexpression of this protein occurs in a significant fraction of breast and ovarian carcinomas, and it correlates with reduced patient survival (18,26,44,45). Because an oncogenic point mutation in the rat homolog of ErbB-2 mimics ligand binding (2, 59), and the ErbB-2 kinase can be stimulated by a heterologous ligand in the context of chimeric receptors (4, 30, 31), it is believed that a still unknown ligand directly binds to this orphan receptor.All members of the ErbB family are characterized by extracellular domains with two cysteine-rich sequences, and a cytoplasmic tyrosine kinase domain flanked by large hydrophilic tails, that display sequence heterogeneity and carry several tyrosine autophosphorylation sites (40, 42). The latter serve as docking sites for various cytoplasmic signaling proteins that share a 100-amino-acid-long dom...
The ErbB family includes two receptors, ErbB‐1 and ErbB‐3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB‐2. Unlike ErbB‐1 and ErbB‐2, the intrinsic tyrosine kinase of ErbB‐3 is catalytically impaired. By using interleukin‐3‐dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB‐3 is devoid of any biological activity but both ErbB‐1 and ErbB‐2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB‐3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter‐receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB‐3‐containing complexes, especially the ErbB‐2/ErbB‐3 heterodimer, are more active than ErbB‐1 complexes. Nevertheless, ErbB‐1 signaling displays dominance over ErbB‐3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen‐activated protein kinases ERK and c‐Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase‐defective ErbB‐3.
The role of microglia in the removal of amyloid deposits after systemically administered anti-A antibodies remains unclear. In the current study, we injected Tg2576 APP transgenic mice weekly with an anti-A antibody for 1, 2, or 3 months such that all mice were 22 months at the end of the study. In mice immunized for 3 months, we found an improvement in alternation performance in the Y maze. Histologically, we were able to detect mouse IgG bound to congophilic amyloid deposits in those mice treated with the anti-A antibody but not in those treated with a control antibody. We found that Fc␥ receptor expression on microglia was increased after 1 month of treatment, whereas CD45 was increased after 2 months of treatment. Associated with these microglial changes was a reduction in both diffuse and compact amyloid deposits after 2 months of treatment. Interestingly, the microglia markers were reduced to control levels after 3 months of treatment, whereas amyloid levels remained reduced. Serum A levels and anti-A antibody levels were elevated to similar levels at all three survival times in mice given anti-A injections rather than control antibody injections. These data show that the antibody is able to enter the brain and bind to the amyloid deposits, likely opsonizing the A and resulting in Fc␥ receptor-mediated phagocytosis. Together with our earlier work, our data argue that all proposed mechanisms of anti-A antibody-mediated amyloid removal can be simultaneously active.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.