We introduce a massively parallel novel sequencing platform that combines an open flow cell design on a circular wafer with a large surface area and mostly natural nucleotides that allow optical end-point detection without reversible terminators. This platform enables sequencing billions of reads with longer read length (~300bp) and fast runs times (<20hrs) with high base accuracy (Q30 > 85%), at a low cost of $1/Gb. We establish system performance by whole-genome sequencing of the Genome-In-A-Bottle reference samples HG001-7, demonstrating high accuracy for SNPs (99.6%) and Indels in homopolymers up to length 10 (96.4%) across the vast majority (>98%) of the defined high-confidence regions of these samples. We demonstrate scalability of the whole-genome sequencing workflow by sequencing an additional 224 selected samples from the 1000 Genomes project achieving high concordance with reference data.
Here we introduce a mostly natural sequencing-by-synthesis (mnSBS) method for single-cell RNA sequencing (scRNA-seq), adapted to the Ultima genomics platform, and systematically benchmark it against current scRNA-seq technology. mnSBS uses mostly natural, unmodified nucleotides and only a low fraction of fluorescently labeled nucleotides, which allows for high polymerase processivity and lower costs. We demonstrate successful application in four scRNA-seq case studies of different technical and biological types, including 5′ and 3′ scRNA-seq, human peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-Seq. Benchmarking shows that results from mnSBS-based scRNA-seq are very similar to those using Illumina sequencing, with minor differences in results related to the position of reads relative to annotated gene boundaries, owing to single-end reads of Ultima being closer to gene ends than reads from Illumina. The method is thus compatible with state-of-the-art scRNA-seq libraries independent of the sequencing technology. We expect mnSBS to be of particular utility for cost-effective large-scale scRNA-seq projects.
Massively parallel single cell RNA-seq (scRNA-seq) for diverse applications, from cell atlases to functional screens, is increasingly limited by sequencing costs, and large-scale low-cost sequencing can open many additional applications, including patient diagnostics and drug screens. Here, we adapted and systematically benchmarked a newly developed, mostly-natural sequencing by synthesis method for scRNA-seq. We demonstrate successful application in four scRNA-seq case studies of different technical and biological types, including 5' and 3' scRNA-seq, human peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-Seq. Our data show comparable results to existing technology, including compatibility with state-of-the-art scRNA-seq libraries independent of the sequencing technology used -- thus providing an enhanced cost-effective path for large scale scRNA-seq.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.