The amygdala has a pivotal role in processing traumatic stress; hence, gaining control over its activity could facilitate adaptive mechanism and recovery. To date, amygdala volitional regulation could be obtained only via real-time functional magnetic resonance imaging (fMRI), a highly inaccessible procedure. The current article presents high-impact neurobehavioral implications of a novel imaging approach that enables bedside monitoring of amygdala activity using fMRI-inspired electroencephalography (EEG), hereafter termed amygdala-electrical fingerprint (amyg-EFP). Simultaneous EEG/fMRI indicated that the amyg-EFP reliably predicts amygdala-blood oxygen level-dependent activity. Implementing the amyg-EFP in neurofeedback demonstrated that learned downregulation of the amyg-EFP facilitated volitional downregulation of amygdala-blood oxygen level-dependent activity via real-time fMRI and manifested as reduced amygdala reactivity to visual stimuli. Behavioral evidence further emphasized the therapeutic potential of this approach by showing improved implicit emotion regulation following amyg-EFP neurofeedback. Additional EFP models denoting different brain regions could provide a library of localized activity for low-cost and highly accessible brain-based diagnosis and treatment.
Real-time functional magnetic resonance imaging (rt-fMRI) has revived the translational perspective of neurofeedback (NF). Particularly for stress management, targeting deeply located limbic areas involved in stress processing has paved new paths for brain-guided interventions. However, the high cost and immobility of fMRI constitute a challenging drawback for the scalability (accessibility and costeffectiveness) of the approach, particularly for clinical purposes. The current study aimed to overcome the limited applicability of rt-fMRI by using an electroencephalography (EEG) model endowed with improved spatial resolution, derived from simultaneous EEG-fMRI, to target amygdala activity (termed amygdala electrical fingerprint (Amyg-EFP). Healthy individuals (n = 180) undergoing a stressful military training programme were randomly assigned to six Amyg-EFP-NF sessions or one of two controls (control-EEG-NF or NoNF), taking place at the military training base. The training results demonstrated specificity of NF learning to the targeted Amyg-EFP signal, which led to reduced alexithymia and faster emotional Stroop indicating better stress coping following Amyg-EFP-NF relative to controls. Neural target engagement was demonstrated in a follow-up fMRI-NF, showing greater amygdala blood-oxygen-level-dependent activity downregulation and amygdala-ventromedial prefrontal cortex functional connectivity following Amyg-EFP-NF relative to NoNF. Together, these results demonstrate limbic specificity and efficacy of Amyg-EFP-NF during a stressful period, pointing to a scalable nonpharmacological yet neuroscience-based training to prevent stress-induced psychopathology.
Recent evidence suggests that learned self-regulation of localized brain activity in deep limbic areas such as the amygdala, may alleviate symptoms of affective disturbances. Thus far self-regulation of amygdala activity could be obtained only via fMRI guided neurofeedback, an expensive and immobile procedure. EEG on the other hand is relatively inexpensive and can be easily implemented in any location. However the clinical utility of EEG neurofeedback for affective disturbances remains limited due to low spatial resolution, which hampers the targeting of deep limbic areas such as the amygdala. We introduce an EEG prediction model of amygdala activity from a single electrode. The gold standard used for training is the fMRI-BOLD signal in the amygdala during simultaneous EEG/fMRI recording. The suggested model is based on a time/frequency representation of the EEG data with varying time-delay. Previous work has shown a strong inhomogeneity among subjects as is reflected by the models created to predict the amygdala BOLD response from EEG data. In that work, different models were constructed for different subjects. In this work, we carefully analyzed the inhomogeneity among subjects and were able to construct a single model for the majority of the subjects. We introduce a method for inhomogeneity assessment. This enables us to demonstrate a choice of subjects for which a single model could be derived. We further demonstrate the ability to modulate brain-activity in a neurofeedback setting using feedback generated by the model. We tested the effect of the neurofeedback training by showing that new subjects can learn to down-regulate the signal amplitude compared to a sham group, which received a feedback obtained by a different participant. This EEG based model can overcome substantial limitations of fMRI-NF. It can enable investigation of NF training using multiple sessions and large samples in various locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.