Alveolar type II epithelial cell (ATII) apoptosis and proliferation of mesenchymal cells are the hallmarks of idiopathic pulmonary fibrosis, a devastating disease of unknown cause characterized by alveolar epithelial injury and progressive fibrosis. We used a mouse model of bleomycin (BLM)-induced lung injury to understand the involvement of p53-mediated changes in urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) levels in the regulation of alveolar epithelial injury. We found marked induction of p53 in ATII cells from mice exposed to BLM. Transgenic mice expressing transcriptionally inactive dominant negative p53 in ATII cells showed augmented apoptosis, whereas those deficient in p53 resisted BLM-induced ATII cell apoptosis. Inhibition of p53 transcription failed to suppress PAI-1 or induce uPA mRNA in BLM-treated ATII cells. ATII cells from mice with BLM injury showed augmented binding of p53 to uPA, uPA receptor (uPAR), and PAI-1 mRNA. p53-binding sequences from uPA, uPAR, and PAI-1 mRNA 3' untranslated regions neither interfered with p53 DNA binding activity nor p53-mediated promoter transactivation. However, increased expression of p53-binding sequences from uPA, uPAR, and PAI-1 mRNA 3' untranslated regions in ATII cells suppressed PAI-1 and induced uPA after BLM treatment, leading to inhibition of ATII cell apoptosis and pulmonary fibrosis. Our findings indicate that disruption of p53-fibrinolytic system cross talk may serve as a novel intervention strategy to prevent lung injury and pulmonary fibrosis.
Because of its expression pattern and its potent effects on mesenchymal cells, platelet-derived growth factor (PDGF) has been implicated as an important factor in epithelial-mesenchymal cell interactions during normal lung development and in the pathogenesis of fibrotic lung disease. To further explore the role of PDGF in these processes, we have developed transgenic mice that express the PDGF-B gene from the lung-specific surfactant protein C (SPC) promoter. Adult SPC-PDGFB transgenic mice exhibited lung pathology characterized by enlarged airspaces, inflammation, and fibrosis. Emphysematous changes frequently occurred throughout the lung, but inflammation and fibrotic lesions were usually confined to focal areas. The severity of this phenotype varied significantly among individual mice within the same SPC-PDGFB transgenic lineage. A pathology similar to that observed in adult mice was noted in lungs from transgenic mice as young as 1 week of age. Neonatal transgenic mice exhibited enlarged saccules and thickened primary septa. Results of these studies indicated that overexpression of PDGF-B induced distinct abnormalities in the developing and adult lung and led to a complex phenotype that encompassed aspects of both emphysema and fibrotic lung disease.
The development of interstitial pulmonary fibrosis is associated with a variety of inflammatory mediators, including peptide growth factors and cytokines. In the work presented here, we have asked whether or not platelet-derived growth factor (PDGF)-A and -B genes and proteins are expressed in anatomic and temporal patterns consistent with this factor playing a role in the disease process. Using an established rat model of asbestos-induced fibroproliferative lung disease, we demonstrate elevated levels of PDGF-A and -B mRNAs in total lung RNA immediately after a single 5-h exposure to approximately 1,000 fibers/ml of chrysotile asbestos. In situ hybridization revealed the PDGF-A and -B in RNAs primarily in macrophages and bronchiolar-alveolar epithelial cells at sites of initial fiber deposition and lung injury. There was clear evidence of PDGF-A and -B mRNAs in interstitial cells as well. The pattern of in situ hybridization was entirely consistent with the appearance (established by immunohistochemistry) of PDGF-A and -B proteins by 24 h post-exposure in the same cell types. Both mRNAs and proteins remained detectable at the fiber deposition sites for almost 2 wk post-exposures. These findings are consistent with our previous studies showing increased mesenchymal cell proliferation and fibroproliferative lesions that progress at the sites where PDGF-A and -B are expressed. Although it is clear that multiple growth factors are produced simultaneously at sites of initial injury, we suggest that the PDGF isoforms could be playing a central role in the disease process based upon their potent mitogenic effects upon mesenchymal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.