The different results proved in this paper do not have very much in common. Since they all deal with the location of the zeros of a polynomial, we have decided to put them in one place. Improving upon a classical result of Cauchy we obtain in § 2 a circle containing all the zeros of a polynomial. In § 3 we obtain an extension of the well known theorem of Enestrőm and Kakeya concerning the zeros of a polynomial whose coefficients are non-negative and monotonie.
The purpose of this paper is to enumerate various classes of cyclically colored m-gonal plane cacti, called m-ary cacti. This combinatorial problem is motivated by the topological classification of complex polynomials having at most m critical values, studied by Zvonkin and others. We obtain explicit formulae for both Ž . labelled and unlabelled m-ary cacti, according to i the number of polygons, Ž .Ž . ii the vertex-color distribution, iii the vertex-degree distribution of each color. We also enumerate m-ary cacti according to the order of their automorphism group. Using a generalization of Otter's formula, we express the species of m-ary cacti in terms of rooted and of pointed cacti. A variant of the m-dimensional Lagrange inversion is then used to enumerate these structures. The method of Liskovets for the enumeration of unrooted planar maps can also be adapted to m-ary cacti.
Several characteristic parameters of randomly grown quadtrees of any dimension are analyzed. Additive parameters have expectations whose generating functions are expressible in terms of generalized hypergeometric functions. A complex asymptotic process based on singularity analysis and integral representations akin to Mellin transforms leads to explicit values for various structure constants related to path length, retrieval costs, and storage occupation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.