Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure1. Atypical HUS (aHUS) can result from genetic or autoimmune factors2 that lead to pathologic complement cascade activation3. By exome sequencing we identify recessive mutations in DGKE (diacylglycerol kinase epsilon) that co-segregate with aHUS in 9 unrelated kindreds, defining a distinctive Mendelian disease. Affected patients present with aHUS before age 1, have persistent hypertension, hematuria and proteinuria (sometimes nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets, and podocytes. Arachidonic acid-containing diacylglycerols (DAG) activate protein kinase C, which promotes thrombosis. DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a pro-thrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treatment of aHUS patients.
Organic anion-transporting polypeptide 1A2 (OATP1A2) is a drug uptake transporter known for broad substrate specificity, including many drugs in clinical use. Therefore, genetic variation in SLCO1A2 may have important implications to the disposition and tissue penetration of substrate drugs. In the present study, we demonstrate OATP1A2 protein expression in human brain capillary and renal distal nephron using immunohistochemistry. We also determined the extent of single nucleotide polymorphisms in SLCO1A2 upon analyses of ethnically defined genomic DNA samples (n ؍ 95 each for African-, Chinese-, European-, and Hispanic-Americans). We identified six nonsynonymous polymorphisms within the coding region of SLCO1A2 (T38C (I13T), A516C (E172D), G559A (A187T), A382T (N128Y), A404T (N135I), and C2003G (T668S)), the allelic frequencies of which appeared to be ethnicitydependent. In vitro functional assessment revealed that the A516C and A404T variants had markedly reduced capacity for mediating the cellular uptake of OATP1A2 substrates, estrone 3-sulfate and two ␦-opioid receptor agonists, deltorphin II, and [D-penicillamine 2,5 ]-enkephalin. On the other hand, the G559A and C2003G variants appeared to have substrate-dependent changes in transport activity. Cell surface biotinylation and immunofluorescence confocal microscopy suggested that altered plasma membrane expression of the transporter may contribute to reduced transport activity associated with the A516C, A404T, and C2003G variants. The A404T (N135I) variant also showed a shift in the apparent molecular size, indicative of alterations in glycosylation status. Taken together, these data suggest that SLCO1A2 polymorphisms may be an important yet unrecognized contributor to interindividual variability in drug disposition and central nervous system entry of substrate drugs.During the past decade, there has been an increasing recognition of the critical interplay between drug transporters and drug-metabolizing enzymes as determinants of drug disposition and response. Indeed, the extent of targeted tissue entry for many drugs may be facilitated by drug transporters, which are often expressed in a tissue-specific manner with broad substrate specificities. Among the uptake transporters, members of the organic anion-transporting polypeptides (human, OATPs 1 ; rodents, Oatps) have been shown to be expressed in organs such as the central nervous system, liver, and intestine and mediate the cellular uptake of a large number of structurally divergent compounds (1). Within this family, OATP1A2 (SLCO1A2, also known as human OATP-A or OATP1) was the first human OATP to be cloned and characterized (2). OATP1A2 mRNA has been detected in various tissues including the brain, liver, and kidney (2, 3). Substrates of OATP1A2 include endogenous compounds such as bile acids, steroid hormones, and their conjugates, thyroid hormones, as well as drugs including fexofenadine, ouabain, peptides (e.g. deltorphin II, [D-penicillamine 2,5 ]enkephalin, DPDPE), and the toxin, microcystin (2, ...
Severe AKI is often associated with multiorgan dysfunction, but the mechanisms of this remote tissue injury are unknown. We hypothesized that renal necroinflammation releases cytotoxic molecules that may cause remote organ damage. In hypoxia-induced tubular epithelial cell necrosis , histone secretion from ischemic tubular cells primed neutrophils to form neutrophil extracellular traps. These traps induced tubular epithelial cell death and stimulated neutrophil extracellular trap formation in fresh neutrophils., ischemia-reperfusion injury in the mouse kidney induced tubular necrosis, which preceded the expansion of localized and circulating neutrophil extracellular traps and the increased expression of inflammatory and injury-related genes. Pretreatment with inhibitors of neutrophil extracellular trap formation reduced kidney injury. Dual inhibition of neutrophil trap formation and tubular cell necrosis had an additive protective effect. Moreover, pretreatment with antihistone IgG suppressed ischemia-induced neutrophil extracellular trap formation and renal injury. Renal ischemic injury also increased the levels of circulating histones, and we detected neutrophil infiltration and TUNEL-positive cells in the lungs, liver, brain, and heart along with neutrophil extracellular trap accumulation in the lungs. Inhibition of neutrophil extracellular trap formation or of circulating histones reduced these effects as well. These data suggest that tubular necrosis and neutrophil extracellular trap formation accelerate kidney damage and remote organ dysfunction through cytokine and histone release and identify novel molecular targets to limit renal necroinflammation and multiorgan failure.
The ability to control osmotic balance is essential for cellular life. Cellular osmotic homeostasis is maintained by accumulation and loss of inorganic ions and organic osmolytes. Although osmoregulation has been studied extensively in many cell types, major gaps exist in our molecular understanding of this essential process. Because of its numerous experimental advantages, the nematode Caenorhabditis elegans provides a powerful model system to characterize the genetic basis of animal cell osmoregulation. We therefore characterized the ability of worms to adapt to extreme osmotic stress. Exposure of worms to high-salt growth agar causes rapid shrinkage. Survival is normal on agar containing up to 200 mM NaCl. When grown on 200 mM NaCl for 2 wk, worms are able to survive well on agar containing up to 500 mM NaCl. HPLC analysis demonstrated that levels of the organic osmolyte glycerol increase 15- to 20-fold in nematodes grown on 200 mM NaCl agar. Accumulation of glycerol begins 3 h after exposure to hypertonic stress and peaks by 24 h. Glycerol accumulation is mediated primarily by synthesis from metabolic precursors. Consistent with this finding, hypertonicity increases transcriptional expression of glycerol 3-phosphate dehydrogenase, an enzyme that is rate limiting for hypertonicity-induced glycerol synthesis in yeast. Worms adapted to high salt swell and then return to their initial body volume when exposed to low-salt agar. During recovery from hypertonic stress, glycerol levels fall rapidly and glycerol excretion increases approximately fivefold. Our studies provide the first description of osmotic adaptation in C. elegans and provide the foundation for genetic and functional genomic analysis of animal cell osmoregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.