The alpha-beta phase transition in the novel energetic material 1,1-diamino-2,2-dinitroethylene, C2H4N4O4 (FOX-7), has been studied by single-crystal X-ray investigations at five different temperatures over the 200-393 K range. In these investigations, the positions of the hydrogen atoms were experimentally determined without any geometric constraints. In addition, X-ray powder investigations using the Guinier technique have been performed to characterize the beta-phase up to 423 K. The alpha-beta phase transition at 389 K is first order, shows a discontinuous increase of the molar volume and entropy (DeltaV = 1.75 cm3/mol, X-ray investigation; DeltaS = 1.5 cal/K mol, DSC analysis), and can be classified as displacive. The hitherto unknown structure of beta-FOX-7 was solved at 393 K and showed simple structural relations to the alpha-polymorph. The characteristic bonding in wave-shaped layers is now found for beta-FOX-7 (P2(1)2(1)2(1), z = 4, a= 6.9738(7) A, b = 6.635(1) A, c = 11.648(2) A, 393 K), as well as for alpha-FOX-7 (P2(1)/n, z = 4, a = 6.9467(7) A, b = 6.6887(9) A, c = 11.350(1) A, beta = 90.143(13) degrees , 373 K). Interestingly, whereas the intramolecular C-C, C-N, N-O, and N-H bond distances remain nearly unchanged for both polymorphs over the whole temperature range from 200 to 393 K, the two nitro groups deviate strongly from the molecular plane formed by the two carbon and two amino nitrogen atoms. In alpha-FOX-7 at 373 K, the nitro groups are twisted -47 and +6 degrees with respect to the carbon-carbon bond, but in beta-FOX-7 at 393 K, these twist angles are changed to -36 and +20 degrees . Within the layers, the FOX-7 molecules show strong pi-conjugation and extensive intra- and intermolecular hydrogen bonding. In this investigation, we have been able to show that alpha- and beta-FOX-7 build up different nets of intermolecular hydrogen bonds. In alpha-FOX-7, each oxygen atom of the nitro groups is involved in two hydrogen bonds resulting in two intramolecular and six intermolecular hydrogen bonds. But in beta-FOX-7 this coordination changes, and half of the oxygen atoms build up two and the other half build up three hydrogen bonds leading to two intramolecular and eight intermolecular hydrogen bonds. The average intermolecular hydrogen bond distance increases slightly from 2.31 A in alpha-FOX-7 to 2.52 A in beta-FOX-7. The C-NO2 bonds are of particular interest because they are referred to as the detonation trigger. It has been suggested that these bonds could be strengthened by the extensive intermolecular hydrogen bonding within the layers in both polymorphs. Such bond strengthening via cooperative effects was proposed in earlier DFT calculations on FOX-7 and may be one key to understanding its low sensitivity and high activation energy to impact.
Abstract1,1‐Diamino‐2,2‐dinitroethene, C2H4N4O4 (FOX‐7), is a novel high energy density material with low friction and impact sensitivity and a high activation barrier to detonation. In this study, the previously unknown crystal structure of the γ‐polymorph of trimorphic FOX‐7 is reported. γ‐FOX‐7 is stable from ∼435 K until the compound decomposes just above 504 K. A single crystal of α‐FOX‐7 (P21/n, Z=4, a=694.67(7) pm, b=668.87(9) pm, c=1135.1(1) pm, β=90.14(1)°, T=373 K) was first transformed into a single crystal of β‐FOX‐7 (P212121, Z=4, a=698.6(1) pm, b=668.6(2) pm, c=1168.7(3) pm, T=423 K) and then into a single crystal of γ‐FOX‐7 at 450 K. The γ‐FOX‐7 crystal was then subsequently quenched to 200 K. The structure of γ‐FOX‐7 (P21/n, Z=8, a=1335.4(3) pm, b=689.5(1) pm, c=1205.0(2) pm, β=111.102(8)°, T=200 K) consists of four planar layers, each containing two crystallographically independent FOX‐7 molecules found in the asymmetric unit.
Hydrazoic acid (HN(3))--potentially explosive, highly toxic, and very hygroscopic--is the simplest covalent azide and contains 97.7 wt % nitrogen. Although its molecular structure was established decades ago, its crystal structure has now been solved by X-ray diffraction for the first time. Molecules of HN(3) are connected to each other by hydrogen bonds in nearly planar layers parallel to (001) with stacking sequence A, B, ... The layer distance, at 2.950(1) Å, is shorter than that in 2H-graphite [3.355(2) Å]. The hydrogen bonds N-H···N are of great interest, since the azido group consists of three homonuclear atoms with identical electronegativity, but different formal charges. These hydrogen bonds are bifurcated into moderate ones with ≈2.0 Å and into weak ones with ≈2.6 Å. The moderate ones build up tetramers (HN(3))(4) in a nearly planar net of eight-membered rings. To the best of our knowledge, such a network of tetramers of a simple molecule is unique.
The ambient pressure phase of silicon disulfide (NP-SiS2), published in 1935, is orthorhombic and contains chains of distorted, edge-sharing SiS4 tetrahedra. The first high pressure phase, HP3-SiS2, published in 1965 and quenchable to ambient conditions, is tetragonal and contains distorted corner-sharing SiS4 tetrahedra. Here, we report on the crystal structures of two monoclinic phases, HP1-SiS2 and HP2-SiS2, which can be considered as missing links between the orthorhombic and the tetragonal phase. Both monoclinic phases contain edge- as well as corner-sharing SiS4 tetrahedra. With increasing pressure, the volume contraction (-ΔV/V) and the density, compared to the orthorhombic NP-phase, increase from only edge-sharing tetrahedra to only corner-sharing tetrahedra. The lattice and the positional parameters of NP-SiS2, HP1-SiS2, HP2-SiS2, and HP3-SiS2 were derived in good agreement with the experimental data from group-subgroup relationships with the CaF2 structure as aristotype. In addition, the Raman spectra of SiS2 show that the most intense bands of the new phases HP1-SiS2 and HP2-SiS2 (408 and 404 cm(-1), respectively) lie between those of NP-SiS2 (434 cm(-1)) and HP3-SiS2 (324 cm(-1)). Density functional theory (DFT) calculations confirm these observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.