We consider a model describing the flow of a fluid inside an elastic tube that is connected to two tanks. We study the linearized system through semigroup theory. Controlling the pressures in the tanks renders a hyperbolic PDE with boundary control. The linearization induces a one-dimensional linear manifold of equilibria; when those are factored out, the corresponding semigroup is exponentially stable. The location of the eigenvalues in dependence on the viscosity is discussed. Exact boundary controllability of the system is achieved by the Riesz basis approach including generalized eigenvectors. A minimal time for controllability is given. The corresponding result for internal distributed control is stated.
The well-posedness theory for hyperbolic systems of first-order quasilinear PDE's with ODE's boundary conditions (on a bounded interval) is discussed. Such systems occur in multi-scale blood flow models, as well as valveless pumping and fluid mechanics. The theory is presented in the setting of Sobolev spaces Hm (m ≥ 3 being an integer), which is an appropriate set-up when it comes to proving existence of smooth solutions using energy estimates. A blow-up criterion is also derived, stating that if the maximal time of existence is finite, then the state leaves every compact subset of the hyperbolicity region, or its first-order derivatives blow-up. Finally, we discuss physical examples which fit in the general framework presented.
We consider first-order hyperbolic systems on an interval with dynamic boundary conditions. These systems occur when the ordinary differential equation dynamics on the boundary interact with the waves in the interior. The well-posedness for linear systems is established using an abstract Friedrichs theorem. Due to the limited regularity of the coefficients, we need to introduce the appropriate space of test functions for the weak formulation. It is shown that the weak solutions exhibit a hidden regularity at the boundary as well as at interior points. As a consequence, the dynamics of the boundary components satisfy an additional regularity. Neither result can be achieved from standard semigroup methods. Nevertheless, we show that our weak solutions and the semigroup solutions coincide. For illustration, we give three particular physical examples that fit into our framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.