This paper presents a numerical based study on the undrained load capacity of a typical torpedo anchor embedded in a purely cohesive isotropic soil using a three-dimensional nonlinear finite element model. In this model, the soil is simulated with solid elements capable of representing its nonlinear physical behavior and the large deformations involved. The torpedo anchor is also modeled with solid elements, and its geometry is represented in detail. Moreover, the anchor-soil interaction is addressed with contact finite elements that allow relative sliding with friction between the surfaces in contact. A number of analyses are conducted in order to understand the response of this type of anchor when different soil undrained shear strengths, load directions, and number and width of flukes are considered. The results obtained indicate two different failure mechanisms: The first one involves significant plastic deformation before collapse and, consequently, mobilizes a great amount of soil; the second is associated with the development of a limited shear zone near the edge of the anchor and mobilizes a small amount of soil. The total contact area of the anchor seems to be an important parameter in the determination of its load capacity, and, consequently, the increase in the undrained shear strength and the number of flukes and/or their width significantly increases the load capacity of the anchor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.