This paper presents an application of the boundary element method to the analysis of crack growth problems in linear elastic fracture mechanics and the correlation of results with experimental data. The methodology consists of computing stress intensity factors (SIFs), the crack growth path and the estimation of fatigue life, via an incremental analysis of the crack extension, considering two independent boundary integral equations, the displacement and traction integral equations. Moreover, a special purpose educational program for simulating two-dimensional crack growth based on the dual boundary element method (DBEM), named BemCracker2D, written in C++ with a MATLAB graphic user interface, has been developed and used to verify the adopted methodology. The numerical results are compared with those of the finite element method (FEM) and correlated with experimental data of fatigue crack-growth tests for twodimensional structural components under simple loading, aiming to demonstrate the accuracy and efficiency of the methodology adopted, as well as to evaluate the robustness of the BemCracker2D code.
Problems involving errors and uncertainties from the use of numerical and experimental responses of beams using optimization processes have been studied by many researchers. In this field, to simulate the real behavior of structures, especially in problems involving damage, it is required to have reliable experimental results in order to adjust a numerical model. These difficulties may be associated for example to the modeling of the connection stiffness, support conditions, or relevant parameters in structures involving damages. This paper proposes a new methodology to detect damage in steel beams using the Differential Evolution Technique based on experimental and numerical data. The results show a great potential of the methodology to solve damage detection problems.
Purpose
The purpose of this paper is to present the application of the boundary element method (BEM) in linear elastic fracture mechanics for analysis of fatigue crack propagation problems in mixed-mode (I+II) using a robust academic software named BemCracker2D and its graphical interface BemLab2D.
Design/methodology/approach
The methodology consists in calculating elastic stress by conventional BEM and to carry out an incremental analysis of the crack extension employing the dual BEM (DBEM). For each increment of the analysis, the stress intensity factors (SIFs) are computed by the J-Integral technique, the crack growth direction is evaluated by the maximum circumferential stress criterion and the crack growth rate is computed by a modified Paris equation, which takes into account an equivalent SIF to obtain the fracture Modes I and II. The numerical results are compared with the experimental and/or BEM values extracted from the open literature, aiming to demonstrate the accuracy and efficiency of the adopted methodology, as well as to validate the robustness of the programs.
Findings
The paper addresses the numerical simulation of fatigue crack growth. The main contribution of the paper is the introduction of a software for simulating two-dimensional fatigue crack growth problems in mixed-mode (I+II) via the DBEM. The software BemCracker2D coupled to the BemLab2D graphical user interface (GUI), for pre/post-processing, are very complete, efficient and versatile and its does make relevant contributions in the field of fracture mechanics.
Originality/value
The main contribution of the manuscript is the development of a GUI for pre/post-processing of 2D fracture mechanics problems, as well as the object oriented programming implementation. Finally, the main merit is of educational nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.