These symptoms were frequent and peculiar in the video game group and might be part of a video game vision syndrome that has not been defined yet. It is important to recognize these signs as possible functional disorders to avoid erroneous diagnostic and therapeutic interventions. [J Pediatr Ophthalmol Strabismus. 2017;54(6):346-355.].
Von Hippel–Lindau (VHL) disease is an autosomal dominant genetic disease caused by VHL gene mutation. Retinal hemangioblastomas (RH) are vascularized tumors and represent the main ocular manifestation of the disease. Histopathologically, RH are composed of capillary vessels and stromal cells, the neoplastic population of the lesion. The origin of these stromal cells remains controversial, even if they are hypothesized to be glial cells. The aim of the present study was to investigate neuronal and microvascular changes of the peripapillary retinal nerve fiber layer, in which glial cells, neurons and capillaries (the radial peripapillary capillary plexus) interact. VHL patients with or without peripheral RH were enrolled and compared to healthy controls. Mean peripapillary retinal nerve fiber layer (pRNFL) thickness was measured by means of optical coherence tomography (OCT). The following vascular parameters of the radial peripapillary capillary plexus were quantified using OCT angiography: Vessel Area Density,Vessel Length Fraction, Vessel Diameter Index and Fractal Dimension. One hundred and nine eyes of 61 patients, and 56 eyes of 28 controls were consecutively studied. Mean pRNFL was significantly thinner in VHL eyes without RH versus eyes with RH and controls. Mean pRNFL thickness did not differ between VHL eyes with RH and controls. All OCTA vascular parameters were reduced in VHL eyes with or without RH versus controls, with significative difference for Vessel Diameter Index. The same OCTA parameters did not significantly differ between VHL eyes with or without RH. In VHL eyes without RH, pRNFL thinning may be the consequence of impaired perfusion of the radial peripapillary capillary plexus, while the increase of pRNFL thickness in VHL eyes with RH may depend on possible activation and proliferation of the other RNFL resident cells, the glial cells.
Background: To evaluate macular perfusion in patients with Von Hippel–Lindau (VHL) disease. Methods: VHL patients with or without peripheral retinal hemangioblastomas (RHs) were consecutively enrolled. A group of healthy subjects served as controls. Macular perfusion was analyzed by means of OCT angiography (OCTA) in the superficial vascular plexus (SVP), and in the intermediate (ICP) and deep retinal capillary (DCP) plexuses. The following OCTA parameters were measured: Vessel Area Density (VAD), Vessel Length Fraction (VLF), Vessel Diameter Index (VDI) and Fractal Dimension (FD). Results: Sixty-three VHL patients (113 eyes) and 28 healthy controls (56 eyes) were enrolled. All OCTA quantitative parameters were reduced in VHL patients vs. controls, reaching statistical significance for VAD of the SVP (0.348 ± 0.07 vs. 0.369 ± 0.06, p = 0.0368) and VDI of all plexuses (p < 0.03 for all). No significant differences were detected between eyes without or with peripheral RHs. Conclusions: Macular perfusion is reduced in VHL patients demonstrating retinal vessel changes that are independent of the presence of peripheral RHs. VHL gene mutations disrupt the hypoxia-induced (HIF)/vascular endothelium growth factors (VEGF) pathway and the Notch signaling, both essential for the normal retinal vasculogenesis and angiogenesis. Therefore, an anomalous generalized retinal vascular development may be hypothesized in VHL disease.
Purpose von Hippel-Lindau (VHL) disease is caused by a mutation of the VHL gene and characterized by the development of retinal hemangioblastomas (RH). Current pathophysiologic mechanisms of RH development and progression are still insufficient to predict RH behavior. VHL gene is involved in the cellular response to hypoxia and in many intracellular signaling pathways expressed both in angiogenesis and inflammation. Optical coherence tomography (OCT) allows to identify hyper-reflective retinal foci (HRF) known as aggregates of activated microglial cells as possible in vivo biomarker of local inflammation. The aim of the present study was to investigate the presence of HRF in patients with genetically confirmed VHL disease. Methods In this cross-sectional study, patients with VHL underwent complete ophthalmological examination and OCT with HRA + OCT Spectralis. HRF were manually identified and calculated in inner (IR), outer (OR) and full retina. Age-matched healthy subjects were enrolled as controls. Results 113 eyes of 63 VHL patients and 56 eyes of 28 healthy subjects were evaluated. HRF number was significantly higher in VHL than in controls in IR (28.06 ± 7.50 vs 25.25 ± 6.64, p = 0.042). No difference was observed in OR and in full retina (OR: 7.73 ± 2.59 vs 7.95 ± 2.51, p = 0.599; full retina: 35.79 ± 8.77 vs 33.20 ± 7.47, p = 0.093). Conclusion The increase of HRF, which mirror retinal microglial activation, characterizes VHL eyes. The role of activated microglia in the retina of VHL eyes needs to be better investigated, mainly considering local VHL disease manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.