The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the "molar tooth sign", a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs.
One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR–AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients.
Macrophage migration inflammatory factor (MIF) is a proinflammatory cytokine with a unique role as the physiologic counterregulator of the immunosuppressive effects of glucocorticoids. MIF has been implicated in the pathogenesis of glomerular inflammation. The MIF promoter contains a G/C polymorphism that is functionally relevant, with the C allele being associated with higher MIF production and linked to susceptibility to inflammatory diseases. We genotyped the MIF -173 polymorphism in 257 children with idiopathic nephrotic syndrome (INS) and 355 controls. Frequency of carriers of the high-producer MIF -173*C allele was higher in patients with INS (31.7%) than in controls (22.0%) [odds ratio (OR) 1.67, p = 0.006] The MIF -173 C allele was more frequent in steroid-resistant patients (43.5%) compared with steroid responders (22.8%) (OR 2.61, p = 0.0005). This difference was particularly evident in focal segmental glomerulosclerosis patients (OR 14.0, p = 0.002). No association with response to cyclosporin A was found. Carriers of the MIF -173*C allele had a significantly higher probability of end-stage renal disease (ESRD) compared with G/G homozygous patients within 5 years from onset (log rank 5.11 p = 0.024). These results underscore the role of MIF in INS disease progression and in the response to glucocorticoid treatment and suggest that screening of MIF genotype at disease onset may identify patients requiring a more aggressive therapeutic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.