The land‐sea breeze is resonant with the inertial response of the ocean at the critical latitude of 30°N/S. 1‐D vertical numerical experiments were undertaken to study the key drivers of enhanced diapycnal mixing in coastal upwelling systems driven by diurnal‐inertial resonance near the critical latitude. The effect of the land boundary was implicitly included in the model through the “Craig approximation” for first‐order cross‐shore surface elevation gradient response. The model indicates that for shallow water depths (<∼100 m), bottom shear stresses must be accounted for in the formulation of the “Craig approximation,” as they serve to enhance the cross‐shore surface elevation gradient response, while reducing shear and mixing at the thermocline. The model was able to predict the observed temperature and current features during an upwelling/mixing event in 60 m water depth in St Helena Bay (∼32.5°S, southern Benguela), indicating that the locally forced response to the land‐sea breeze is a key driver of diapycnal mixing over the event. Alignment of the subinertial Ekman transport with the surface inertial oscillation produces shear spikes at the diurnal‐inertial frequency; however their impact on mixing is secondary when compared with the diurnal‐inertial resonance phenomenon. The amplitude of the diurnal anticyclonic rotary component of the wind stress represents a good diagnostic for the prediction of diapycnal mixing due to diurnal‐inertial resonance. The local enhancement of this quantity over St Helena Bay provides strong evidence for the importance of the land‐sea breeze in contributing to primary production in this region through nutrient enrichment of the surface layer.
Whales have been titled climate savers in the media with their recovery welcomed as a potential carbon solution. However, only a few studies were performed to date providing data or model outputs to support the hypothesis. Following an outline of the primary mechanisms by which baleen whales remove carbon from the atmosphere for eventual sequestration at regional and global scales, we conclude that the amount of carbon whales are potentially sequestering might be too little to meaningfully alter the course of climate change. This is in contrast to media perpetuating whales as climate engineers. Creating false hope in the ability of charismatic species to be climate engineers may act to further delay the urgent behavioral change needed to avert catastrophic climate change impacts, which can in turn have indirect consequences for the recovery of whale populations. Nevertheless, whales are important components of marine ecosystems, and any further investigation on existing gaps in their ecology will contribute to clarifying their contribution to the ocean carbon cycle, a major driver of the world’s climate. While whales are vital to the healthy functioning of marine ecosystems, overstating their ability to prevent or counterbalance anthropogenically induced changes in global carbon budget may unintentionally redirect attention from known, well-established methods of reducing greenhouse gases. Large scale protection of marine environments including the habitats of whales will build resilience and assist with natural carbon capture.
Seasonal feeding behaviour of humpback whales (Megaptera novaeangliae) has been observed in the coastal waters of the Southern Benguela where the species has been observed forming super-groups during the austral spring in recent years since 2011. Super-groups are unprecedented densely-packed aggregations of between 20 and 200 individuals in low-latitude waters and their occurrences indicate possible changes in feeding behaviour of the species. We accessed published data on super-groups occurrence in the study area in 2011, 2014 and 2015, and investigated oceanographic drivers that support prey availability in this region. We found that enhanced primary production is a necessary but not sufficient condition for super-groups to occur. Positive chlorophyll anomalies occurring one month prior to the super-group occurrences were identified, but only a concurrent significantly reduced water volume export from the region throughout October were conducive to the aggregations in the specific years. Hydrodynamic model results attributed the anomalous decreased volume export to the strength and orientation of the Goodhope Jet and associated eddy activity. The combination of random enhanced primary production typical of the region and emerging anomalous conditions of reduced water export in October since 2011 resulted in favourable food availability leading to the unique humpback whale aggregations. The novelty of this grouping behaviour is indicative of the lack of such oceanographic conditions in the past. Given the recency of the events, it is difficult to attribute this reduction in ocean transport to climatic regime shifts, and the origin should be likely investigated in the distant water mass interaction with the greater Agulhas system rather than in local intensifications of the upwelling conditions. A positive trend in the humpback whale population abundance points to the need to monitor the exposure of the species to the changing climate conditions.
A regional assessment of three global ocean reanalysis products is presented for southern Africa’s major oceanographic features. The reanalyses include Mercator Ocean’s Global Reanalysis (GLORYS), the Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) Bluelink Reanalysis (BRAN) and the Fleet Numerical Meteorology and Oceanography Center’s (FNMOC) global Hybrid Coordinate Ocean Model (HYCOM) reanalysis. The aim is to provide modelers with sufficient information for selecting the appropriate product for use as boundary conditions to force their regional ocean models, as well as to provide marine industries, relevant government agencies and academics with insight into the optimal reanalysis product for their purposes. The reanalyses are compared to both assimilated and independent observational datasets spanning various regions within the southern African marine environment. While all reanalysis products reproduce the eastern and western boundary current systems surrounding southern Africa, limitations exist. BRAN outperforms the other reanalyses in its representation of the Mixed Layer Depth, contributing to its good representation of coastal SSTs in the Benguela upwelling system, whereas GLORYS and HYCOM’s misrepresented MLD result in significant warm biases in this region. The Angola-Benguela Frontal Zone and it’s variability is best reproduced by BRAN and HYCOM. The Agulhas Current system’s major components are well reproduced by both GLORYS and BRAN. HYCOM, however, simulates considerably more early retroflections than are observed which have resulted in its mean eastward location. While all the reanalyses overestimate the occurrence of Agulhas meanders, GLORYS and BRAN resolve the associated variability best. Agulhas Current transport is best resolved by GLORYS, unlike BRAN and HYCOM which largely overestimate the magnitude of its south-westward flow, linked to their misrepresentation of the Current’s vertical structure. The bay-scale and nearshore evaluations highlighted issues pertaining to the resolution of the reanalyses and their use at such a small scale. The reanalyses are limited by their resolution, as well as by their misrepresentation of submesoscale processes or lack thereof, prompting the need for the development of regional downscaled models in and around the southern African oceans based on the global ocean reanalysis products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.