Production of large quantities of highly purified plasmid DNA is essential for gene therapy. A low-copy-number pBR322-derived plasmid (VCL1005) was converted to a high-copy-number plasmid (VCL1005G/A) by incorporating a G-->A mutation that affects initiation of DNA replication from the ColE1 origin of replication. Because the phenotypic effect of this mutation is enhanced at an elevated temperature, a further increase in yield was achieved by changing the growth temperature from 37 degrees C to 42 degrees C at mid-log phase during batch and fed-batch fermentation. The combined effect of the single base-pair change and the elevated growth temperature produced an overall yield of 2.2 grams of plasmid DNA available for recovery from a 10-liter fed-batch fermentation compared to 0.03 grams from a 10-liter batch fermentation, a 70-fold increase in yield. The plasmid DNA isolated from this process contained lower levels of RNA and chromosomal DNA contaminants, simplifying downstream processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.