The global push to achieve ecosystem restoration targets has resulted in an increased demand for native seeds that current production systems are not able to fulfill. In many countries, seeds used in ecological restoration are often sourced from natural populations. Though providing seed that is reflective of the genetic diversity of a species, wild harvesting often cannot meet the demands for large‐scale restoration and may also result in depletion of native seed resources through over harvesting. To improve seed production and decrease seed costs, seed production systems have been established in several countries to generate native seeds based on agricultural or horticultural production methods or by managing natural populations. However, there is a need to expand these production systems which have a primary focus on herbaceous species to also include slower maturing shrub and tree seed. Here we propose that to reduce the threat of overharvest on the viability of natural populations, seed collection from natural populations should be replaced or supplemented by seed production systems. This overview of seed production systems demonstrates how to maximize production and minimize unintended selection bias so that native seed batches maintain genetic diversity and adaptability to underpin the success of ecological restoration programs.
Abstract:The European Union committed to restore 15% of degraded ecosystems by 2020, and to comply with this goal, native plant material, such as seeds, is needed in large quantities. The native seed production of herbaceous species plays a critical role in supplying seed for restoration of a key ecosystem: grasslands. The objective of this work is to provide for the first time a characterization of the sector at a multi-country European level together with key information about the community of native seed users via intensive web-based research and a direct survey of industry participants. Based on more than 1300 contacts and direct surveying of more than 200 stakeholders across Europe, responses indicated that: the European native seed industry consists primarily of small to medium enterprises; responding native seed users purchase annually an average of 3600 kg of seeds with an average expenditure of €17,600; the industry (suppliers and consumers) favours development of seed zones and would participate in a European network for knowledge sharing. This study provides framework principles that can guide decisions in this sector, critical for fulfilling the growing demand for native seed as a primary tool for large-scale restoration on the continent.
In the model species Arabidopsis thaliana phytochromes mediate dormancy and germination responses to seasonal cues experienced during seed maturation on the maternal plants. However, the effect of the maternal light environment on seed germination in native wild species has not been well studied. This is particularly important given its practical application in the context of environmental restoration, when there can be marked changes in the canopy. Plants of Primula vulgaris were grown in the field over two vegetative seasons under four shading treatments from low to high ratio of red to far-red light (R:FR). Leaf and seed traits were assessed in response to the light treatments. The germination of seeds from these four maternal environments (pre-dispersal) was investigated at seven light and five temperature treatments (post-dispersal). Thinner leaves, larger leaf area and greater chlorophyll content were found in plants growing in reduced R:FR. Shading in the maternal environment led to increased seed size and yield, although the conditions experienced by the maternal plants had no effect on seed germination. Seeds responded strongly to the cues experienced in their immediate germination environment. Germination was always enhanced under higher R:FR conditions. The observed phenotypic trait variation plays a major role in the ability of P. vulgaris to grow in a wide range of light conditions. However, the increased germination capacity in response to a higher R:FR for all maternal environments suggests potential for seedling establishment under vegetative shade only in the presence of canopy gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.